• 回答数

    2

  • 浏览数

    203

泷泷大魔王
首页 > 考试培训 > 八下数学期末考试卷

2个回答 默认排序
  • 默认排序
  • 按时间排序

贫僧法号能吃

已采纳

数学期末考试与 八年级 学生的学习是息息相关的。下面是我为大家精心整理的苏科版八年级下数学期末试卷,仅供参考。苏科版八年级下数学期末试题 一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题纸相应位置上) 1.下列图形中,是中心对 称图形的是 A. B. C. D. 2.为了解2016年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是 年泰兴市八年级学生是总体 B.每一名八年级学生是个体 名八年级学生是总体的一个样本 D.样本容量是500 3.下列计算正确的是 A. B. C. D. 4.用配 方法 解方程 时,原方程应变形为 A. B. C. D. 5.当压力F (N)一定时,物体所受的压强p (Pa)与受力面积S (m )的函数关系式为 (S≠0),这个函数的图像大致是 6.下列说法:(1)矩形的对角线互相垂直且平分;(2)菱形的四边相等;(3)一组对边平行,另一组对边相等的四边形是平行四边形;(4)正方形的对角线相等,并且互相垂直平分. 其中正确的个数是 个 个 个 个 第二部分 非选择题(共132分) 二、填空题(本大题共10个小题,每小题3分,共30分.请把答案直接填写在答题纸相应位置上.) 7.在英文单词believe中,字母“e”出现的频率是 ▲ . 8.在分式 中,当x=▲时分式没有意义. 9.当x≤ 2时,化简: = ▲ . 10.已知 ,那么 的值为 ▲ . 11.若关于x的一元二次方程 有实数根,则m的取值范围是 ▲ . 12.若关于 的方程 产生增根,那么m的值是______▲_______. 13.已知点(-1,y1),(2,y2),(3,y3)在反比例函数 的图像上,则用“<”连接y1,y2,y3为___▲___. 14.如图,边长为6的正方形AB CD和边长为8的正方形BEFG 排放在一起,O1和O2分别是两个正方形的对称中心, 则△O1BO2的面积为▲. 15.平行四边形ABCD中一个角的平分线把一条边分成3cm和 4cm两部分则这个四边形的周长是___▲___cm. 16.在平面直角坐标系中,平行四边形OABC的边OC落在x轴的 正半轴上,且点C(4,0),B(6,2),直线y=2x+1以每秒1个单位 的速度向下平移,经过▲秒该直线可将平行四边形 OABC的面积平分. 三、解答题(本大题共有10小题,共102分,请在答题卡指定区域内 作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分10分) 计算:(1) (2) 18.(本题满分10分) 解方程: (1) (2)(x﹣2)2=2x﹣4. 19.(本题满分8分) 先化简再求值: ,其中m是方程x2﹣x=2016的解. 20.(本题满分10分) 某学校校园读书节期间,学校准备购买一批课外读物.为使购买的课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别对部分同学进行了抽样调查(每位同学只选一类).下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息, 解答下列问题: (1)本次抽样调查一共抽查了_______名同学; (2)条形统计图中,m=_______,n=_______; (3)扇形统计图中,艺术类读物所在扇形的 圆心角是_______度; (4)学校计划购买课外读物6000册,请根据 样本数据,估计学校购买其他类读物多少 册比较合理? 21.(本题满分10分) 如图,在四边形ABCD中,AB∥CD,∠B=∠D. (1)求证:四边形ABCD为平行四边形; (2)若点P为对角线AC上的一点,PE⊥AB于E,PF⊥AD于F, 且PE=PF,求证:四边形ABCD是菱形. 22.(本题满分8分) 某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的 后,为了让道路尽快投入使用,工兵连将工作效率提高了 ,一共用了10小时完成任务. (1)按原计划完成总任务的 时,已抢修道路 米; (2)求原计划每小时抢修道路多少米. 23.(本题满分8分) 先观察下列等式,再回答问题: ① ; ② ③ ; ……………… (1)根据上面三个等式提供的信息,请猜想第四个等式; (2)请按照上面各等式规律,试写出用n(n为正整数)表示的等式,并用所学知识证明. 24.(本题满分12分) 码头工人每天往一艘轮船上装载货物,装载速度y(吨/天) 与装完货物所需时间x(天)之间的函数关系如图. (1)求y与x之间的函数表达式; (2)由于遇到紧急情况,要求船上的货物不超过5天卸货完毕, 那么平均每天至少要卸多少吨货物? (3)若码头原有工人10名,且每名工人每天的装卸量相同,装载 完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名 工人才能完成任务? 25.(本题满分12分) 如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D 从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E 从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中 一个点到达终点时,另一个点也随之停止运动.设点D、E运动的 时间是t秒(0

八下数学期末考试卷

132 评论(9)

太极武者NO1

八年级下册数学期末试卷及答案

大家的成完成了初一阶段的学习,进入紧张的初二阶段。下面是我整理的八年级下册数学期末试卷及答案,欢迎参考!

一、选择题(每小题3分,共3’]p-

0分)

1、直线y=kx+b(如图所示),则不等式kx+b≤0的解集是( )

A、x≤2 B、x≤-1 C、x≤0 D、x>-1

2、如图,小亮在操场上玩,一段时间内沿M→A→B→M的路径匀速散步,能近

似刻画小亮到出发点M的距离y与时间x之间关系的函数图像是( )

3、下列各式一定是二次根式的是( )

A、 B、 C、 D、

4、如果一组数据3,7,2,a,4,6的平均数是5,则a的值是( )

A、8 B、5 C、4 D、3

5、某班一次数学测验的成绩如下:95分的有3人,90分的有5人,85分的有6人,75分的有12人,65

分的有16人,55分的有5人,则该班数学测验成绩的众数是( )

A、65分 B、75分 C、16人 D、12人

6、如图,点A是正比例函数y=4x图像上一点,AB⊥y轴于点B,则ΔAOB的面积是( )

A、4 B、3 C、2 D、1

7、下列命题中,错误的是( )

A、有一组邻边相等的平行四边形是菱形

B、四条边都相等的四边形是正方形

C、有一个角是直角的平行四边形是矩形

D、相邻三个内角中,两个角都与中间的角互补的四边形是平行四边形

8、如图,在一个由4 4个小正方形网格中,阴影部分面积与正方形ABCD的面积比是( )

A、3:4 B、5:8 C、9:16 D、1:2

9、如果正比例函数y=(k-5)x的.图像在第二、四象限内,则k的取值范围是( )

A、k<0 B、k>0 C、k>5 D、k<5

10、已知甲、乙两组数据的平均数相等,如果甲组数据的方差为,乙组数据的方差为。则( )

A、甲组数据比乙组数据波动大 B、甲组数据比乙组数据波动小

C、甲、乙两组数据的波动一样大 D、甲、乙两组数据的波动不能比较

二、填空题(每小题3分,共24分)

11、数据1,-3,2,3,-2,1的中位数是 ,平均数为 。

12、若平行四边形的一组邻角的比为1:3,则较大的角为 度。

13、如果菱形的两条对角线的长分别是6 cm和8 cm,那么菱形的边长为 cm。

14、函数y=-2x的图像在每个象限内,y随x的增大而 。

15、等腰三角形的底边长为12 cm,一腰的长为10 cm,则这个等腰三角形底边上的高为 cm。

16、已知一个三角形的周长为20 cm,则连接它的各边的中点所得的三角形的周长为 cm

17、一次函数的图像过点(-1,0),且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函

数解析式 。

18、若a= ,b= ,则2a(a+b)-(a+b)2的值是 。

三、解答题(共46分)

19、计算(10分)

(1) (2)

20、(8分)当 时,求 的值

21、(8分)已知一次函数y=x+2的图像与正比例函数y=kx的图像都经过点(-1,m)。

(1)求正比例函数的解析式;

(2)在同一坐标系中画出一次函数与正比例函数的图像。

22、(10分)如图,在平行四边形ABCD中,点E是CD的的中点,AE的延长线与BC交于点F。

(1)求证:ΔAED≌ΔFEC;

(2)连接AC、DF,求证四边形ACFD是平行四边形。

23、(10分)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元),现有两种购买方案:

方案一:若单位赞助广告费10000元,则该单位所购买门票的价格为每张60元(总费用=广告费+门

票费);方案二:购买门票方式如图所示。解答下列问题:

(1)方案一中,y与x的函数关系式为 ;

(2)方案二中,当0≤x≤100时,y与x的函数关系式为 ,

当x>100时,y与x的函数关系式为 ;

(3)甲、乙两单位分别采用方案一、方案二购买本场足球门赛票共700张,

花去费用总计58000元,甲、乙两单位各购买门票多少张?

答案

一、ACBAA CBBDB

二、11、1, 12、135 13、5 14、减小 15、8 16、30 17、y=-2x-2(答案不唯一)

18、1

三、19、(1)7 (2)

20、化简得 ,代值得原式=112

21、(1)y=-x (2)略

22、略

23、(1)y=60x+10000

(2)y=100x, y=80x+2000

(3)设甲购买门票a张,则乙购买门票(700-a)张,

当0≤700-a≤100s时,有60a+10000+100(700-a)=58000,解得a=550.

当a=550时,700-a=150>100,不符合题意,舍去;

当700-a>100时,有60a+10000+80(700-a)=58000,解得a=500.当A=500时,700-a=200

即甲、乙两单位各购买门票500张、200张

一、选择题(本大题共10小题,每题3分,共30分)

1.下列根式中不是最简二次根式的是( )

A. B. C. D.

2.下列各组数中,能构成直角三角形的三边的长度是( )

,5,7 B. C. ,, ,22,23

3. 正方形具有而矩形没有的性质是( )

A. 对角线互相平分 B. 每条对角线平分一组对角

C. 对角线相等 D. 对边相等

4.一次函数 的图象不经过的象限是( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

,BD是□ABCD的两条对角线,如果添加一个条件,使□ABCD为矩形,那么这个条件可以是( )

A. AB=BC B. AC=BD C. AC⊥BD D. AB⊥BD

6.一次函数 ,若 ,则它的图象必经过点( )

A. (1,1) B. (—1,1) C. (1,—1) D. (—1,—1)

7.比较 , , 的大小,正确的是( )

A. < < B. < <

C. < < D. < <

8. 某人驾车从A地走高速公路前往B地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B地后发现油箱中还剩油4升,则从A地出发到达B地的过程中,油箱中所剩燃油 (升)与时间 (小时)之间的函数图象大致是( )

A B C D

9. 某校八年级甲、乙两班举行电脑汉字输入速度比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表:

班级 参加人数 中位数 方差 平均字数

甲 55 149 191 135

乙 55 151 110 135

有一位同学根据上表得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀的人数比甲班优秀的人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是( )

A. ①②③ B. ①② C. ①③ D. ②③

10. 如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:

①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是( )

D. 4x98

二、填空题(本大题共8小题,每题3分,共24分)

11.二次根式 中字母 的取值范围是__________.

12.已知一次函数 ,则它的图象与坐标轴围成的三角形面积是__________.

13.如图, □ABCD的对角线AC,BD相交于点O,点E,F分别是AO,BO的中点,若AC+BD=24㎝,△OAB的周长是18㎝,则EF= ㎝.

14.在一次函数 中,当0≤ ≤5时, 的最小值为 .

15.如图,已知∠B=∠C=∠D=∠E=90°,且AB=CD=3,BC=4,DE=EF=2,则AF的长是_____.

16.若一组数据 , , ,…, 的方差是3,则数据 -3, -3, -3,…,

-3的方差是 .

17. 如图,已知函数 和 的图象交点为P,则不等式 的解集为 .

18.如图,点P 是□ABCD 内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:

①S1+ S3= S2+S4 ②如果S4>S2 ,则S3 >S1 ③若S3=2S1,则S4=2S2

④若S1-S2=S3-S4,则P点一定在对角线BD上.

其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上).

三、解答题(本大题共46分)

19. 化简求值(每小题3分,共6分)

(1) - × + (2)

20.(本题5分)已知y与 成正比例,且 时, .

(1)求y与x之间的函数关系式;

(2)设点( ,-2)在(1)中函数的图象上,求 的值.

21.(本题7分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,求EF的长.

22.(本题8分)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图象信息,解答下列问题:

(1)这辆汽车往、返的速度是否相同?

请说明理由;

(2)求返程中y与x之间的函数表达式;

(3)求这辆汽车从甲地出发4h时与甲地的距离.

23.(本题10分)某学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为区级先进班集体,下表是这三个班的五项素质考评得分表:

班级 行为规范 学习成绩 校运动会 艺术获奖 劳动卫生

甲班 10 10 6 10 7

乙班 10 8 8 9 8

丙班 9 10 9 6 9

根据统计表中的信息解答下列问题:

(1)请你补全五项成绩考评分析表中的数据:

班级 平均分 众数 中位数

甲班 10

乙班 8

丙班 9 9

(2)参照上表中的数据,你推荐哪个班为区级先进班集体?并说明理由.

(3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照3:2:1:1:3的比确定,学生处的李老师根据这个平均成绩,绘制一幅不完整的条形统计图,请将这个统计图补充完整,依照这个成绩,应推荐哪个班为区级先进班集体?

解:(1)补全统计表;

(3)补全统计图,并将数据标在图上.

24.(本题10分)已知:如图所示,四边形ABCD中,∠ABC=∠ADC=90°,M是AC上任一点,O是BD的中点,连接MO,并延长MO到N,使NO=MO,连接BN与ND.

(1)判断四边形BNDM的形状,并证明;

(2)若M是AC的中点,则四边形BNDM的形状又如何?说明理由;

(3)在(2)的条件下,若∠BAC=30°,∠ACD=45°,求四边形BNDM的各内角的度数.

淮南市2013—2014学年度第二学期期终教学质量检测

八年级数学试卷参考答案及评分标准

一、选择题:(每小题3分,共30分)

题号 1 2 3 4 5 6 7 8 9 10

答案 C C B B B D A C A D

二、填空题:(每小题3分,共24分)

题号 11 12 13 14 15 16 17 18

答案 ≥2

3 -7 10 12 >1

①④

注:第12题写 不扣分.

三、解答题(46分)

19、(1) …………3分

(2)16-6 …………3分

20、解:(1) 设y=k(x+2)

(1+2)k=-6

k=-2 …………3分

(2) 当y=-2时

-2a-4=-2

a=-1 ………………5分

21、解∵正方形纸片ABCD的边长为3,∴∠C=90°,BC=CD=3.

根据折叠的性质得:EG=BE=1,GF=DF. ……………1分

设DF=x,则EF=EG+GF=1+x,FC=DC-DF=3-x,EC=BC-BE=3-1=2.

在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3-x)2,

解得: . ………………6分

∴DF= ,EF=1+ ……………7分

22、解:(1)不同.理由如下:

往、返距离相等,去时用了2小时,而返回时用了小时,

往、返速度不同.…………………2分

(2)设返程中 与 之间的表达式为 ,

解得 …………………5分

.( )(评卷时,自变量的取值范围不作要求) 6分

(3)当 时,汽车在返程中,

.

这辆汽车从甲地出发4h时与甲地的距离为48km. ……………8分

班级 平均分 众数 中位数

甲班 10

乙班 8

丙班

23、解:(1)

……………3分

(2)以众数为标准,推选甲班为区级先进班集体.

阅卷标准:回答以中位数为标准,推选甲班为区级先进班集体,同样得分.

……………5分)

(3) (分)

补图略 ……………(9分)

推荐丙班为区级先进班集体……………(10分)

24、(1)∵M0=N0,OB=OD

∴四边形BNDM是平行四边形 …………………3分

(2) 在Rt△ABC中,M为AC中点

∴BM= AC

同理:DM= AC

∴BM=DM

∴平行四边行BNDM是菱形…………………7分

(3) ∵BM=AM

∴∠ABM=∠BAC=30°

∴∠BMC=∠ABM+∠BAC =60°

同理:∠DMC=2∠DAC=90°

∴∠BMD=∠BMC+∠DMC=90°+60°=150°

∴∠MBN=30°

∴四边形BNDM的各内角的度数是150°,30°,150°,30°.……………10分

348 评论(8)

相关问答