金色年华119
2017年广东省中考数学试卷
其他年份的和其他省市的(关注【初中生智慧君】微信公众号搜索:gzzhkt)内附答案详细解析
一、选择题(本大题共10小题,每小题3分,共30分)
1.(3分)5的相反数是()
A. B.5 C.﹣ D.﹣5
2.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()
A.×109 B.×1010 C.4×109 D.4×1010
3.(3分)已知∠A=70°,则∠A的补角为()
A.110° B.70° C.30° D.20°
4.(3分)如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()
A.1 B.2 C.﹣1 D.﹣2
5.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()
A.95 B.90 C.85 D.80
6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()
A.等边三角形 B.平行四边形 C.正五边形 D.圆
7.(3分)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()
A.(﹣1,﹣2) B.(﹣2,﹣1) C.(﹣1,﹣1) D.(﹣2,﹣2)
8.(3分)下列运算正确的是()
A.a+2a=3a2 B.a3•a2=a5 C.(a4)2=a6 D.a4+a2=a4
9.(3分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()
A.130° B.100° C.65° D.50°
10.(3分)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()
A.①③ B.②③ C.①④ D.②④
二、填空题(本大题共6小题,每小题4分,共24分)
11.(4分)分解因式:a2+a= .
12.(4分)一个n边形的内角和是720°,则n= .
13.(4分)已知实数a,b在数轴上的对应点的位置如图所示,则a+b 0.(填“>”,“<”或“=”)
14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是 .
15.(4分)已知4a+3b=1,则整式8a+6b﹣3的值为 .
16.(4分)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为 .
三、解答题(本大题共3小题,每小题6分,共18分)
17.(6分)计算:|﹣7|﹣(1﹣π)0+()﹣1.
18.(6分)先化简,再求值:(+)•(x2﹣4),其中x=.
19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?
四、解答题(本大题共3小题,每小题7分,共21分)
20.(7分)如图,在△ABC中,∠A>∠B.
(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.
21.(7分)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.
(1)求证:AD⊥BF;
(2)若BF=BC,求∠ADC的度数.
22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:
体重频数分布表
(1)填空:①m= (直接写出结果);
②在扇形统计图中,C组所在扇形的圆心角的度数等于 度;
(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?
五、解答题(本大题共3小题,每小题9分,共27分)
23.(9分)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.
(1)求抛物线y=﹣x2+ax+b的解析式;
(2)当点P是线段BC的中点时,求点P的坐标;
(3)在(2)的条件下,求sin∠OCB的值.
24.(9分)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.
(1)求证:CB是∠ECP的平分线;
(2)求证:CF=CE;
(3)当=时,求劣弧的长度(结果保留π)
25.(9分)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.
(1)填空:点B的坐标为 ;
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;
(3)①求证:=;
②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.
xian蝦米
《初中数学中考真题精编》百度网盘资源免费下载
链接:
2008-2019学年初中数学中考真题精编Word版本 累计1715份|2019全国各地中考数学试题073份.rar|2018全国各地中考数学试题100份.rar|2017全国各地中考数学试题154份.zip|2016全国各地中考数学试题151份.zip|2015全国各地中考数学试题162份.rar|2014全国各地中考数学试题165份.zip|2013全国各地中考数学试题170份.zip|2012全国各地中考数学试题172份.zip|2011全国各地中考数学试题150份.zip|2010全国各地中考数学试题150份.zip|2009全国各地中考数学试题151份.zip|2008全国各地中考数学试卷157份.rar
王大锤哇
已知Rt△ABC中,AB=AC,在Rt△ADE中,AD=DE,连结EC,取EC中点M,连结DM和BM, (1)若点D在边AC上,点E在边AB上且与点B不重合,如图①,求证:BM=DM且BM⊥DM; (2)如图①中的△ADE绕点A逆时针转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明。 解:(1)略 (2)猜想:成立。证明如下证明:(如图所示,作DF⊥AE交AE于F,作BG⊥AC交AC于G,连结FM,GM) 在Rt△ADE和Rt△ABC中 ∵AD=DE AB=BC 且DF⊥AE BG⊥AC ∴F为AE中点 G为AC中点(等腰三角形三线合一) ∴DF=AF BG=AG(直角三角形斜边上的中线等于斜边的一半) ∵M为CE中点 ∴FM为△AEC的中位线 GM为△ACE的中位线 ∴FM‖AC GM‖AE(三角形中位线定理) ∴四边形AGMF为平行四边形(两组对边分别平行的四边形是平行四边形) ∴FM=AG GM=AF(平行四边形对边相等) ∴DF=GM BG=FM(等量代换) ∵∠BGM=90°-∠MGC 而∠MGC=∠FAG=∠EFM(两直线平行,同位角相等) ∴∠BGM=90°-∠EFM 即∠BGM=∠MFD 在△FDM和△GMB中 ∵FD=GM ∠MFD=∠BGM FM=GB ∴△FDM≌△GMB(边角边定理) ∴DM=MB ∠FMD=∠GBM ∴∠DMB=∠FMD+∠FMB =∠GBM+∠FMB =∠EPB(三角形任何两个内角和等于和它不相邻的外角) 而∠FPB=∠AGB=90°(两直线平行,同位角相等) 即∠DMB=90° ∴DM=BM且DM⊥BM图片在此【自己画的,可能不太好看】:
优质考试培训问答知识库