• 回答数

    2

  • 浏览数

    119

微雨燕双飞1988
首页 > 考试培训 > 初一数学上册期中考试

2个回答 默认排序
  • 默认排序
  • 按时间排序

ilikedianping225

已采纳

开学了,很多人也步入了学习的新阶段。为了检测学生们的学习成果,试题是必不可少的。这样才能检测出学生是否能灵活运用所学知识。下面,为您带来“初一上册数学期中试卷及答案”,希望能为你提供参考哦。

一、填得圆圆满满(每小题3分,共30分)

(-3)= 。

的绝对值是 ,相反数是 ,倒数是 。

3.单项式 的系数是 ,次数是 。

4.若逆时针旋转90o记作+1,则-2表示 。

5.如果a、b互为相反数,x、y互为倒数,那么(a+b) -xy+a2-b2= 。

6.在数轴上,点A表示数-1,距A点个单位长度的点表示的数是 。

7.灾难无情人有情!某次在抗震救灾文艺汇演中,各界艺人和人士为地震灾区人民捐款捐物达万元。将这个数字用科学计数法表示并保留三个有效数字为 元。

8.长方形的长是a米,宽比长的2倍少b米,则宽为 米。

9.若m、n满足 =0,则

10.某厂10月份的产值是125万元,比3月份的产值的3倍少13万元,若设3月份的产值为x万元,则可列出的方程为

二、做出你的选择(每小题3分,共30分)

11.如果向东走2km记作+2km,那么-3km表示( ).

A.向东走3km B.向南走3km C.向西走3km D.向北走3km

12.下列说法正确的是( C )

的系数为0 B. 是一项式 是单项式 系数是4

13.下列各组数中是同类项的是( )

和4y 和4xy 和-8x2y 和4y2x

14.下列各组数中,互为相反数的有( )

① ② ③ ④

A.④ B.①② C.①②③ D.①②④

15.若a+b<0,ab<0,则下列说法正确的是( )

、b同号 、b异号且负数的绝对值较大

、b异号且正数的绝对值较大 D.以上均有可能

16.下列计算正确的是( )

D. a- a=0

17.数轴上的点M对应的数是-2,那么将点M向右移动4个单位长度,此时点M表示的数是( )

A. -6 B. 2 C. -6或2 D.都不正确

18.若 的相反数是3, ,则x+y的值为( ).

B. 2 C. 8或-2 或2

19.若 3x=6,2y=4则5x+4y 的值为( )

D. 6

20.若-3xy2m与5x2n-3y8的和是单项式,则m、n的值分别是( )

三、用心解答(共60分)

21.(16分)计算

(1) -26-(-15) (2)(+7)+(-4)-(-3)-14

(3)(-3)× ÷(-2)×(- ) (4)-(3-5)+32×(-3)

22.解方程(本题8分)

(1)x+3x= -12 (2)3x+7=32-2x

23.(6分)将下列各数在数轴上表示出来,并用“<”连接:

-22, -(-1), 0, ,

24.(6分)若a是绝对值最小的数,b是最大的负整数。先化简,再求值:

25.(6分)列方程解应用题。

把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本。这个班有多少名学生?

26.(9分)出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:-2,+5,-1,+1,-6,-2,问:

(1)将最后一位乘客送到目的地时,小李在什么位置?

(2)若汽车耗油量为(升/千米),这天上午小李接送乘客,出租车共耗油多少升?

(3)若出租车起步价为8元,起步里程为3km(包括3km),超过部分每千米元,问小李这天上午共得车费多少元?

27.(9分)从2开始,连续的偶数相加,它们和的情况如下表:

加数的个数n S

1 2 = 1×2

2 2+4 = 6 = 2×3

3 2+4+6 = 12 = 3×4

4 2+4+6+8 = 20 = 4×5

5 2+4+6+8+10 = 30 = 5×6

(1)若n=8时,则 S的值为_____________.

(2)根据表中的规律猜想:用n的式子表示S的公式为:

S=2+4+6+8+…+2n=____________.

(3)根据上题的规律计算2+4+6+8+10+…+98+100 的值.

七年级数学试题答案

一填得圆圆满满(每小题3分,共30分)

1、2 2、 ,,-2 3、 ,3 4、顺时针旋转180o 5、-1 6、或 7、×106

8、2a-b 9、9 10、3x-13=125

二.做出你的选择(每小题3分,共30分)

11、C 12、C 13、D 14、B 15、D 16、D 17、B 18、D 19、A 20、C

三、用心解答(共60分)

21、(16分)(1)-11 (2)8

(3)- (4)-25

22、(8分)(1)x=-3 (2)x=25

23、(6分)-22<<0<-(-1)<

24、(6分)解:由题意,得 a=0,b=-1

原式=2a2-4ab-2b2-a2+3ab+3b2

=a2-ab+b2

当a=0,b=-1时, 原式=(-1)2=1

25、(6分)这个班有45名学生

26、(9分)解:(1)-2+5-1+1-6-2=-5

答:小李在起始的西5km的位置

(2)

=2+5+1+1+6+2=17 17×0,2=

答:出租车共耗油升

(3)6×8+(2+3)×

答:小李这天上午共得车费54元。

27、(9分)(1)72; (2) ;

(3)2+4+6+8+10+…+98+100=50×51=2550

一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内)

1.在-212 、+710 、-3、2、0、4、5、-1中,负数有 ( )

A、 1个 B、2个 C、3个 D、4个

2.如下图所示,在数轴上表示到原点的距离为3个单位的点有( )

点 点 点和D点 点和C点

3. 2008年5月26 日下午,奥运圣火扬州站的传递在一路“中国加油” 中进行着,全程11800米,用科学计数法,结果为 ( )米

A. 103 104 104 103

4.下列各项中,是同类项的是( )

与y B. 与2pq 与ac

5.已知 两数在数轴上对应的点如下图所示,下列结论正确的是 ( )

A. B. C. D.

6.去括号后等于a-b+c的是( )

A. a-(b+c) (b-c) (b-c) (b+c)

7.一件商品的进价是a 元,提价20%后出售,则这件商品的售价是 ( )

元 元 元 元

8.若 ,则x-y等于( )

9.下列说法错误的是( )

A、 是二次三项式 B、 不是单项式

C、 的系数是 D、 的次数是6

10.如果|a|=-a, 下列各式一定成立的是 ( )

A. a>0 B. a>0或a=0 C. a<0或a=0 D. 无法确定

二、填空题:(本大题共8小题,每小题3分,共24分.把答案写在题中的横线上)

11.水位上升30cm 记作+30cm,那么-16cm表示 。

12.用“<”>”填空:

(1)-(- 1) - | - 1 |;(2)- ; (3) _____

13.计算: =___________

14.若a与b互为相反数,c与 d互为倒数,则 ___________

15.单项式 的系数是 ,次数是 。

16. 。

17.比-x2+x+3多x2+5x的是 。

18.观察下列算式: 根据上述算式中的规律,你认为 的末位数字是 .

三、解答题:(本大题共6小题,共66分.解答时,应写出必要的解答过程或演算步骤.)

19.(5分)画出数轴,在数轴上表示下列各数,并用“<”连接。

, , , ,

20.计算(每小题4分,共24分)

(1) (2)

21.(8分)两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h,水流速度是 km/h.

(1)2 h后两船相距多远?

(2)2 h后甲船比乙船多航行多少千米?

22.(9分)某检修小组乘汽车检修供电线路,向南记为正,向北记为负。某天自A地出发,所走路程(单位:千米)为: +22,-3,+4,-2,-8,+17,-2,+12,+7,-5.

问:(1)最后他们是否回到出发点?若没 有,则在A地的什么地方?距离A地多远?

(2)若每千米耗油升,则今天共耗油多少升?

23.(每小题5分,共10分).先化简,再求值。

(1) ,其中 .

(2) ,其中, .

24.(10 分)我 校七年级四个班的学生在植树节这天义务植树。一班植树x棵,二班植树的棵树 比一班的2倍少40棵,三班植树的棵树比二班的一 半多30棵,四班植树的棵数比三班的一半多30棵。

(1)求四个班共植树多少棵?(用含有x的式子表示);

(2)当x=60时,四个班中哪个班植的树最多?

试卷答案

一、选择题

. 6B 10C

二、填空题

11. 水位下降16cm ;12.(1)大于 (2)小于 (3)小于; ;

20.(1) -30 (2) - (3) 48 (4)32 (5) ab- a2 (6) x2-x-3

21.(1)200 (2)4a

22(1)没有回到出发点,在A的南边,距A 42千米

(2)

23.(1)x2+5x, -6

(2) -x2+ y2 , 3

24.(1)

(2)二班最多

1. 的倒数是 .

2.方程2 -4 =0的解是 .

3.近似数万精确到 位.

4.若单项式-2 是一个关于 、 的五次单项式,则 = .

5.国家投资建设的泰州长江大桥开工,据泰州日报报道,大桥预算总造价是9370000000元人民币,用科学计数法表示为 元.

中秋发短信送祝福,若每条短信元,则发送 条短信是 元.

7.列等式表示: 的4倍与7的和等于20 .

8.观察下面单项式: ,-2 ,根据你发现的规律,第6个式子是 .

9.若整式5 -3与 -12互为相反数,则 的值是 .

10.一个三角形的三边长的比为3:4:5,最短的边比最长的边短6㎝,则这个三角形的周长为 ㎝.

11.下列各项是一元一次方程的是()

―1=0B. = = - =8

12.化简 的结果为()

A. C. D.

13.下列变形属于移项的是()

A.由2 =2,得 =1B.由 =-1,得 =-2

C.由3 - =0,得3 = D.由- -1=0,得 +1=0

14.数轴上,在表示与 之间,整数点有( )

个个个个

15.若 =3 ―5, = -7, + =20,则 的值为( )

16.某品牌电脑原价为 元,先降价 元,又降低20%后的售价为( )

( + )元 ( - )元

( + )元 ( - )元

17.计算:(1)(-38)+52+118+(-62)

18.计算:

19.合并同类项:3

20.利用等式的性质解方程:

(1)2 +4=10; (2) -5=1.

21.化简求值: ,其中 =-2, =3.

22.当 为何值时,5 +4+2 与4 -3的值相等.

23.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点.

(1)求动点A所走过的路程及A、C之间的距离.

(2)若C表示的数为1,则点A表示的数为 .

24.海宝在研究一元一次方程时,遇到这样一个问题:

神厨小福贵对另一个厨师说:“我三天一共做了3000个面包,第二天做的是第一天的3倍,第三天比第二天少做了500个,请你帮忙算一下小福贵第一天做了多少个面包?

25.某学校办公楼前有一长为 ,宽为 的长方形空地,在中心位置留出一个半径为 的圆形区域建一个喷泉,两边是两块长方形的休息区,阴影部分为绿地.

(1)用含字母和 的式子表示阴影部分的面积;

(2)当 =4, =3, =1, =2时,阴影部分面积是多少?( 取3)

26.某工厂八月十五中秋节给工人发苹果,如果每人分2箱,则剩余20箱;如果每人分3箱,则还缺20箱,这个工厂有多少人?

27.有20筐白菜,以每筐25千克为标准,超过或不足的分别用正、负来表示,记录如下:

与标准质量的差(单位:千克) -3 -2 0 1

筐数 1 4 2 3 2 8

(1)20筐白菜中,最重的一筐比最轻的一筐要重多少千克?

(2)与标准质量比较,20筐白菜总计超过或不足多少千克?

(3)若白菜每千克售价元,则出售这20筐白菜可卖多少元?

28.某移动公司开设了两种通讯业务:“全球通”使用者缴费50元月租费,然后每通话1min再付话费元;“快捷通”不缴月租费,每通话1min付话费元(本题的通话均指市内通话).若一个月通话 min,两种方式的费用分别为 元和 元.

(1)用含 的式子分别表示 和 ,则 = , = ;

(2)某人估计一个月通话300min,选择哪种业务合算?

(3)每个月通话多少分钟时,两种方式所付的费用一样多?

参考答案

1. ;2. =0;3.百位;4. =5; 5. ×109; 6. ; 7. 4 +7=20;

8. -32 ; 9. ; 10. 36;

;;;;;;

17.(1)(-38)+52+118+(-62)=(―38-62)+(52+118)=-100+170=70,

(2) =

18. =÷3=-4

19.

20. (1) 2 +4=10

解:2 +4-4=10-4

2 =6

=3

(2) -5=1

解: -5+5=1+5

=6

=-24

21.

当 =-2, =3时,

原式=-(-2)2×33-1=—109

22. = -o-m

23.(1)2+5=7;AC=5-2=3; (2)-2。

24. 解:设第一天做了 个

+3 +3 ―500=3000,解得 =500

25.(1)

(2)

26.解:设这个工厂有 个人

2 +20=3 -20

解得, =40

27.(1)(-3)=,

(2)-3×1+(-2)×4+()×2+0×3+1×2+×8=8

(3)(25×20+8)×元

28.(1) =50+ , = ,

(2)当 =300时, =170, =180 ,全球通合算 .

(3)当 = 时,50+ = ,解得, =250

一、选择题 (每小题4分,共40分)

1、-2的相反数是 ( )

C. D-

2、计算:-2+5的结果是 ( )

C .3

3、370000用科学记数法表示为 ( )

×10 ×10 ×10 D.以上答案都不对

4、与-3ab是同类项的是 ( )

b C. ab b

5、下列等式不成立的是 ( ) A.(-3) =-3 =(-2) C.|-3|=|3| D.(-3) =3

6、化简:-6ab+ba+8ab的结果是 ( )

7、近似数的有几个效数字 ( )

个 个 个 个

8、单相式-2x y系数与次数分别是 ( )

, 2 B2, 3. , 3 , 2

9、下列计算正确的是 ( )

+2x =4x y -7y x =0 10、若a = , a = , a = , a = … ,按此规律:a = ( ) A. B. C. D.

二、填(每小题4分,空题共24分)

11、|-5|=________

12、-4 +2 =_______

13、绝对值最小的有理数是__________

14、代数式- 的系数是________次数是_________

15、列式表示:m的4倍与n的1 倍的和为___________

16、若x=-1, 则x+x +x +x +…+x =_______________

三,计算题 (每小题6分,共24分)

17、 (-5)×(-8)-(-28)÷4

18、 -9÷3+( - )×12+3

19、 -2 -(-2) -2 ×(-1)

20、 -( ) ×9-2(- )÷ +|-4|× +2 ×(-1 )

四、解答题(每小题10分,共40分)

21、化简3m-2(m-3n)

22、化简 2a b+2ab -[2(a b-1)+2ab +2]

23、已知 (x + 3) +|y-6|=0 求x-y的值

24、化简求值 (-x +5+4x)-(4-5x+x ) 其中x=-2五、解答题(每小题10分,共22分)

25、海边的一段堤岸高出海平面12米,附近的建筑物高出海平面50米,海里一艘潜水艇在海平面下30米处,现以海边堤岸高度为基准,将其记为0米,那么附近建筑物及潜水艇的高度应如何表示?

26、股民小王上星期五以收盘价67元买进某公司股票1000股,下表为本周内每日该股票的涨跌情况: 星期 一 二 三 四 五每股涨跌/元 +4 + -1 -6

(1)星期三收盘时,每股多少元?

(2)本周内每股买最高价多少元?最低价多少元?

试题答案

一、选择题

二、 填空题

11. 5 .12. 013. 0 .14. , . 4m+ . 0.

三.解答题

17. 4718. 819 020. 3

四.解答题

21. m+6n 22. 0 23. -9 24. 解:原式= -x +5+4x-4+5x-x = -2x +9x+1 当x=-2时,原式=-8

五、解答题

25. 解:建筑物:38米 ,潜水艇:-42米 26. 解: (1)67+(+4)+(+)+(-1)=(元),故星期三收盘时,每股元 (2)最高价为元,最低价66元

初一数学上册期中考试

341 评论(8)

行者孙llllll

1.初一数学上册期中考试重点总结

图形的初步认识

一、立体图形与平面图形

1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

2、长方形、正方形、三角形、圆等都是平面图形。

3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

二、点和线

1、经过两点有一条直线,并且只有一条直线。

2、两点之间线段最短。

3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

4、把线段向一方无限延伸所形成的图形叫做射线。

三、角

1、角是由两条有公共端点的射线组成的图形。

2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。

3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量单位。

把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。

四、角的比较

从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。

五、余角和补角

1、如果两个角的和等于90(直角),就说这两个角互为余角。

2、如果两个角的和等于180(平角),就说这两个角互为补角。

3、等角的补角相等。

4、等角的余角相等。

六、相交线

1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

2、注意:

⑴垂线是一条直线。

⑵具有垂直关系的两条直线所成的4个角都是90。

⑶垂直是相交的特殊情况。

⑷垂直的记法:a⊥b,AB⊥CD。

3、画已知直线的垂线有无数条。

4、过一点有且只有一条直线与已知直线垂直。

5、连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

两条直线相交有4对邻补角。

8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。

七、平行线

1、在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4、判定两条直线平行的方法:

(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

5、平行线的性质

(1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

(2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

(3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

2.初一数学上册期中考试重点总结

函数

1、各个待定系数表示的的意义。

2、熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。

3、利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。

4、两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。

5、利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。

6、与坐标轴交点坐标一定要会求。面积值的求解方法,距离之和的最小值的求解方法,距离之差值的求解方法。

7、数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。

8、自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。

3.初一数学上册期中考试重点总结

【知识点】:

认识直线、线段与射线,会用字母正确读出直线、线段和射线。

直线:可以向两端无限延伸;没有端点。读作:直线AB或直线BA。

线段:不能向两端无限延伸;有两个端点。读作:线段AB或线段BA。

射线:可以向一端无限延伸;有一个端点。读作:射线AB(只有一种读法,从端点读起。)

补充:

画直线。

过一点可画无数条直线;过两个能画一条直线;过三点,如果三点在一条线上,经过三点只能画一条直线,如果这三点不在一条线上,那么经过三点不能画出直线。

明确两点之间的'距离,线段比曲线、折线要短。

直线、射线可以无限延长。因为直线没有端点,射线只有一个端点,所以不可以测量,没有具体的长度。如:直线长4厘米。是错误的。只有线段才能有具体的长度。

4.初一数学上册期中考试重点总结

一、几何图形

几何学:数学中以空间形式为研究对象的分支叫做几何学。

从实物中抽象出的各种图形统称为几何图形。几何图形可分为立体图形和平面图形;各个部分不都在同一平面内的几何图形叫做立体图形,各个部分都在同一平面内的几何图形叫做平面图形。

1、几何图形的投影问题

每一种几何体从不同的方向去看它,可以得到不同的简单平面几何图形。实际上投影所得到的简单平面几何图形是被投影几何体可遮挡视线的部分在平面内所留下的影子。

2、立体图形的展开问题

将立体图形的表面适当剪开。

一、点、线、面、体

1、点、线、面、体的概念点动成线,线动成面,面动成体由平面和曲成围成一个几何体。

2、点、线、面和体之间的关系

(1)点动成线、线动成面、面动成体;

(2)体是由面组成、面与面相交成线、线与线相交成点;

二、线段、射线、直线

1、线段、射线、直线的定义

(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。线段可以量出长度。(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。射线无法量出长度。(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。直线无法量出长度。概念剖析:①线段有两个端点,射线有一个端点,直线没有端点;

②“线段可以量出长度”,即线段有明确的长度,“射线和直线都无法量出其长度”,即射线和直线既没有明确的长度,

也没有射线与射线、直线与直线、射线与直线之间的长短比较之说;

③线段只有长短之分,而没有大小之别,射线和直线既没有长短之分,也没有大小之别;

2、线段、射线、直线的表示方法

(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。

(2)射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。

(3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。

概念剖析:①将线段的两个端点位置颠倒,得到的新线段与原来的线段是同一线段,即线段AB与线段BA是同一线段;

②将表示射线的两个点位置颠倒,得到的新射线与原来的射线不是同一射线,即射线AB与射线BA不是同一射线,因为它们的端点和方向不同;

③将表示直线的两个点位置颠倒,得到的新直线与原来的直线是同一直线,即直线AB与直线BA是同一直线;④识别图中线段的条数要把握一点:只要有一个端点不相同,就是不同的线段;⑤识别图中射线的条数要把握两点:端点和方向缺一不可;

5.初一数学上册期中考试重点总结

整式的加减

一、代数式

1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

二、整式

1、单项式:

(1)由数和字母的乘积组成的代数式叫做单项式。

(2)单项式中的数字因数叫做这个单项式的系数。

(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、多项式

(1)几个单项式的和,叫做多项式。

(2)每个单项式叫做多项式的项。

(3)不含字母的项叫做常数项。

3、升幂排列与降幂排列

(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。

(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

三、整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:

(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:

a.准确的找出同类项。

b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

(4)在掌握合并同类项时注意:

a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.

b.不要漏掉不能合并的项。

c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

说明:合并同类项的关键是正确判断同类项。

3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:

(1)代数式化简

(2)代入计算

(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

302 评论(14)

相关问答