changyin1116
1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理 三角形两边的和大于第三边16、推论 三角形两边的差小于第三17、三角形内角和定理 三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理 四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论 任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论 夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0), 那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA

lin10241121
高一物理公式总结 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as 3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t 7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0 8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差 9.主要物理量及单位:初速(Vo):m/s 加速度(a):m/s^2 末速度(Vt):m/s 时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s= 注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/ 2) 自由落体 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。 (2)a=g= m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。 3) 竖直上抛 1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=≈10m/s2 ) 3.有用推论Vt^2 –Vo^2=-2gS 4.上升最大高度Hm=Vo^2/2g (抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动 万有引力 1)平抛运动 1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt 3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2 5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2 合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo 7.合位移S=(Sx^2+ Sy^2)1/2 , 位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo 注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。 2)匀速圆周运动 1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R 5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR 7.角速度与转速的关系ω=2πn (此处频率与转速意义相同) 8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz) 周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s 角速度(ω):rad/s 向心加速度:m/s2 注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。 3)万有引力 1.开普勒第三定律T2/R3=K(=4π^2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关) 2.万有引力定律F=Gm1m2/r^2 G=×10^-11N·m^2/kg^2方向在它们的连线上 3.天体上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天体半径(m) 4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2 5.第一(二、三)宇宙速度V1=(g地r地)1/2= V2= V3= 6.地球同步卫星GMm/(R+h)^2=m*4π^2(R+h)/T^2 h≈ km h:距地球表面的高度 注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为。 机械能 1.功 (1)做功的两个条件: 作用在物体上的力. 物体在里的方向上通过的距离. (2)功的大小: W=Fscosa 功是标量 功的单位:焦耳(J) 1J=1N*m 当 0<= a <派/2 w>0 F做正功 F是动力 当 a=派/2 w=0 (cos派/2=0) F不作功 当 派/2<= a <派 W<0 F做负功 F是阻力 (3)总功的求法: W总=W1+W2+W3……Wn W总=F合Scosa 2.功率 (1) 定义:功跟完成这些功所用时间的比值. P=W/t 功率是标量 功率单位:瓦特(w) 此公式求的是平均功率 1w=1J/s 1000w=1kw (2) 功率的另一个表达式: P=Fvcosa 当F与v方向相同时, P=Fv. (此时cos0度=1) 此公式即可求平均功率,也可求瞬时功率 1)平均功率: 当v为平均速度时 2)瞬时功率: 当v为t时刻的瞬时速度 (3) 额定功率: 指机器正常工作时最大输出功率 实际功率: 指机器在实际工作中的输出功率 正常工作时: 实际功率≤额定功率 (4) 机车运动问题(前提:阻力f恒定) P=Fv F=ma+f (由牛顿第二定律得) 汽车启动有两种模式 1) 汽车以恒定功率启动 (a在减小,一直到0) P恒定 v在增加 F在减小 尤F=ma+f 当F减小=f时 v此时有最大值 2) 汽车以恒定加速度前进(a开始恒定,在逐渐减小到0) a恒定 F不变(F=ma+f) V在增加 P实逐渐增加最大 此时的P为额定功率 即P一定 P恒定 v在增加 F在减小 尤F=ma+f 当F减小=f时 v此时有最大值 3.功和能 (1) 功和能的关系: 做功的过程就是能量转化的过程 功是能量转化的量度 (2) 功和能的区别: 能是物体运动状态决定的物理量,即过程量 功是物体状态变化过程有关的物理量,即状态量 这是功和能的根本区别. 4.动能.动能定理 (1) 动能定义:物体由于运动而具有的能量. 用Ek表示 表达式 Ek=1/2mv^2 能是标量 也是过程量 单位:焦耳(J) 1kg*m^2/s^2 = 1J (2) 动能定理内容:合外力做的功等于物体动能的变化 表达式 W合=ΔEk=1/2mv^2-1/2mv0^2 适用范围:恒力做功,变力做功,分段做功,全程做功 5.重力势能 (1) 定义:物体由于被举高而具有的能量. 用Ep表示 表达式 Ep=mgh 是标量 单位:焦耳(J) (2) 重力做功和重力势能的关系 W重=-ΔEp 重力势能的变化由重力做功来量度 (3) 重力做功的特点:只和初末位置有关,跟物体运动路径无关 重力势能是相对性的,和参考平面有关,一般以地面为参考平面 重力势能的变化是绝对的,和参考平面无关 (4) 弹性势能:物体由于形变而具有的能量 弹性势能存在于发生弹性形变的物体中,跟形变的大小有关 弹性势能的变化由弹力做功来量度 6.机械能守恒定律 (1) 机械能:动能,重力势能,弹性势能的总称 总机械能:E=Ek+Ep 是标量 也具有相对性 机械能的变化,等于非重力做功 (比如阻力做的功) ΔE=W非重 机械能之间可以相互转化 (2) 机械能守恒定律: 只有重力做功的情况下,物体的动能和重力势能 发生相互转化,但机械能保持不变 表达式: Ek1+Ep1=Ek2+Ep2 成立条件:只有重力做功 回答者: 煮酒弹剑爱老庄 - 高级经理 六级 1-28 20:51 高中物理公式,规律汇编表 一,力学 胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长,粗细和材料有关) 重力: G = mg (g随离地面高度,纬度,地质结构而变化;重力约等于地面上物体受到的地球引力) 3 ,求F,的合力:利用平行四边形定则. 注意:(1) 力的合成和分解都均遵从平行四边行法则. (2) 两个力的合力范围: F1-F2 F F1 + F2 (3) 合力大小可以大于分力,也可以小于分力,也可以等于分力. 4,两个平衡条件: 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零. F合=0 或 : Fx合=0 Fy合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点. [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向 (2 )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解) 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5,摩擦力的公式: (1) 滑动摩擦力: f= FN 说明 : ① FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G ② 为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小,接触面相对运动快慢以及正压力N无关. (2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O f静 fm (fm为最大静摩擦力,与正压力有关) 说明: a ,摩擦力可以与运动方向相同,也可以与运动方向相反. b,摩擦力可以做正功,也可以做负功,还可以不做功. c,摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反. d,静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用. 6, 浮力: F= gV (注意单位) 7, 万有引力: F=G 适用条件:两质点间的引力(或可以看作质点,如两个均匀球体). G为万有引力恒量,由卡文迪许用扭秤装置首先测量出. 在天体上的应用:(M--天体质量 ,m—卫星质量, R--天体半径 ,g--天体表面重力加速度,h—卫星到天体表面的高度) a ,万有引力=向心力 G b,在地球表面附近,重力=万有引力 mg = G g = G 第一宇宙速度 mg = m V= 8, 库仑力:F=K (适用条件:真空中,两点电荷之间的作用力) 电场力:F=Eq (F 与电场强度的方向可以相同,也可以相反) 10,磁场力: 洛仑兹力:磁场对运动电荷的作用力. 公式:f=qVB (BV) 方向--左手定则 安培力 : 磁场对电流的作用力. 公式:F= BIL (BI) 方向--左手定则 11,牛顿第二定律: F合 = ma 或者 Fx = m ax Fy = m ay 适用范围:宏观,低速物体 理解:(1)矢量性 (2)瞬时性 (3)独立性 (4) 同体性 (5)同系性 (6)同单位制 12,匀变速直线运动: 基本规律: Vt = V0 + a t S = vo t +a t2 几个重要推论: (1) Vt2 - V02 = 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值) (2) A B段中间时刻的瞬时速度: Vt/ 2 == (3) AB段位移中点的即时速度: Vs/2 = 匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 初速为零的匀加速直线运动,在1s ,2s,3s……ns内的位移之比为12:22:32……n2; 在第1s 内,第 2s内,第3s内……第ns内的位移之比为1:3:5…… (2n-1); 在第1米内,第2米内,第3米内……第n米内的时间之比为1:: ……( 初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:s = aT2 (a--匀变速直线运动的加速度 T--每个时间间隔的时间) 竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动.全过程是初速度为VO,加速度为g的匀减速直线运动. 上升最大高度: H = (2) 上升的时间: t= (3) 上升,下落经过同一位置时的加速度相同,而速度等值反向 (4) 上升,下落经过同一段位移的时间相等. 从抛出到落回原位置的时间:t = (5)适用全过程的公式: S = Vo t --g t2 Vt = Vo-g t Vt2 -Vo2 = - 2 gS ( S,Vt的正,负号的理解) 14,匀速圆周运动公式 线速度: V= R =2f R= 角速度:= 向心加速度:a =2 f2 R 向心力: F= ma = m2 R= mm4n2 R 注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心. (2)卫星绕地球,行星绕太阳作匀速圆周运动的向心力由万有引力提供. 氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供. 15,平抛运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动 水平分运动: 水平位移: x= vo t 水平分速度:vx = vo 竖直分运动: 竖直位移: y =g t2 竖直分速度:vy= g t tg = Vy = Votg Vo =Vyctg V = Vo = Vcos Vy = Vsin 在Vo,Vy,V,X,y,t,七个物理量中,如果 已知其中任意两个,可根据以上公式求出其它五个物理量. 16, 动量和冲量: 动量: P = mV 冲量:I = F t (要注意矢量性) 17 ,动量定理: 物体所受合外力的冲量等于它的动量的变化. 公式: F合t = mv' - mv (解题时受力分析和正方向的规定是关键) 18,动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变. (研究对象:相互作用的两个物体或多个物体) 公式:m1v1 + m2v2 = m1 v1'+ m2v2'或p1 =- p2 或p1 +p2=O 适用条件: (1)系统不受外力作用. (2)系统受外力作用,但合外力为零. (3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力. (4)系统在某一个方向的合外力为零,在这个方向的动量守恒. 19, 功 : W = Fs cos (适用于恒力的功的计算) 理解正功,零功,负功 (2) 功是能量转化的量度 重力的功------量度------重力势能的变化 电场力的功-----量度------电势能的变化 分子力的功-----量度------分子势能的变化 合外力的功------量度-------动能的变化 20, 动能和势能: 动能: Ek = 重力势能:Ep = mgh (与零势能面的选择有关) 21,动能定理:外力所做的总功等于物体动能的变化(增量). 公式: W合= Ek = Ek2 - Ek1 = 22,机械能守恒定律:机械能 = 动能+重力势能+弹性势能 条件:系统只有内部的重力或弹力做功. 公式: mgh1 + 或者 Ep减 = Ek增 23,能量守恒(做功与能量转化的关系):有相互摩擦力的系统,减少的机械能等于摩擦力所做的功. E = Q = f S相 24,功率: P = (在t时间内力对物体做功的平均功率) P = FV (F为牵引力,不是合外力;V为即时速度时,P为即时功率;V为平均速度时,P为平均功率; P一定时,F与V成正比) 25, 简谐振动: 回复力: F = -KX 加速度:a = - 单摆周期公式: T= 2 (与摆球质量,振幅无关) (了解)弹簧振子周期公式:T= 2 (与振子质量,弹簧劲度系数有关,与振幅无关) 26, 波长,波速,频率的关系: V == f (适用于一切波) 二,热学 1,热力学第一定律:U = Q + W 符号法则:外界对物体做功,W为"+".物体对外做功,W为"-"; 物体从外界吸热,Q为"+";物体对外界放热,Q为"-". 物体内能增量U是取"+";物体内能减少,U取"-". 2 ,热力学第二定律: 表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化. 表述二:不可能从单一的热源吸收热量并把它全部用来对外做功,而不引起其他变化. 表述三:第二类永动机是不可能制成的. 3,理想气体状态方程: (1)适用条件:一定质量的理想气体,三个状态参量同时发生变化. (2) 公式: 恒量 4,热力学温度:T = t + 273 单位:开(K) (绝对零度是低温的极限,不可能达到) 三,电磁学 (一)直流电路 1,电流的定义: I = (微观表示: I=nesv,n为单位体积内的电荷数) 2,电阻定律: R=ρ (电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关) 3,电阻串联,并联: 串联:R=R1+R2+R3 +……+Rn 并联: 两个电阻并联: R= 4,欧姆定律:(1)部分电路欧姆定律: U=IR (2)闭合电路欧姆定律:I = 路端电压: U = -I r= IR 电源输出功率: = Iε-Ir = 电源热功率: 电源效率: = = (3)电功和电功率: 电功:W=IUt 电热:Q= 电功率 :P=IU 对于纯电阻电路: W=IUt= P=IU = 对于非纯电阻电路: W=Iut P=IU (4)电池组的串联:每节电池电动势为`内阻为,n节电池串联时: 电动势:ε=n 内阻:r=n (二)电场 1,电场的力的性质: 电场强度:(定义式) E = (q 为试探电荷,场强的大小与q无关) 点电荷电场的场强: E = (注意场强的矢量性) 2,电场的能的性质: 电势差: U = (或 W = U q ) UAB = φA - φB 电场力做功与电势能变化的关系:U = - W 3,匀强电场中场强跟电势差的关系: E = (d 为沿场强方向的距离) 4,带电粒子在电场中的运动: 铀? Uq =mv2 ②偏转:运动分解: x= vo t ; vx = vo ; y =a t2 ; vy= a t a = (三)磁场 几种典型的磁场:通电直导线,通电螺线管,环形电流,地磁场的磁场分布. 磁场对通电导线的作用(安培力):F = BIL (要求 B⊥I, 力的方向由左手定则判定;若B‖I,则力的大小为零) 磁场对运动电荷的作用(洛仑兹力): F = qvB (要求v⊥B, 力的方向也是由左手定则判定,但四指必须指向正电荷的运动方向;若B‖v,则力的大小为零) 带电粒子在磁场中运动:当带电粒子垂直射入匀强磁场时,洛仑兹力提供向心力,带电粒子做匀速圆周运动.即: qvB = 可得: r = , T = (确定圆心和半径是关键) (四)电磁感应 1,感应电流的方向判定:①导体切割磁感应线:右手定则;②磁通量发生变化:楞次定律. 2,感应电动势的大小:① E = BLV (要求L垂直于B,V,否则要分解到垂直的方向上 ) ② E = (①式常用于计算瞬时值,②式常用于计算平均值) (五)交变电流 1,交变电流的产生:线圈在磁场中匀速转动,若线圈从中性面(线圈平面与磁场方向垂直)开始转动,其感应电动势瞬时值为:e = Em sinωt ,其中 感应电动势最大值:Em = nBSω . 2 ,正弦式交流的有效值:E = ;U = ; I = (有效值用于计算电流做功,导体产生的热量等;而计算通过导体的电荷量要用交流的平均值) 3 ,电感和电容对交流的影响: 电感:通直流,阻交流;通低频,阻高频 电容:通交流,隔直流;通高频,阻低频 电阻:交,直流都能通过,且都有阻碍 4,变压器原理(理想变压器): ①电压: ② 功率:P1 = P2 ③ 电流:如果只有一个副线圈 : ; 若有多个副线圈:n1I1= n2I2 + n3I3 电磁振荡(LC回路)的周期:T = 2π 四,光学 1,光的折射定律:n = 介质的折射率:n = 2,全反射的条件:①光由光密介质射入光疏介质;②入射角大于或等于临界角. 临界角C: sin C = 3,双缝干涉的规律: ①路程差ΔS = (n=0,1,2,3--) 明条纹 (2n+1) (n=0,1,2,3--) 暗条纹 相邻的两条明条纹(或暗条纹)间的距离:ΔX = 4,光子的能量: E = hυ = h ( 其中h 为普朗克常量,等于×10-34Js, υ为光的频率) (光子的能量也可写成: E = m c2 ) (爱因斯坦)光电效应方程: Ek = hυ - W (其中Ek为光电子的最大初动能,W为金属的逸出功,与金属的种类有关) 5,物质波的波长: = (其中h 为普朗克常量,p 为物体的动量) 五,原子和原子核 氢原子的能级结构. 原子在两个能级间跃迁时发射(或吸收光子): hυ = E m - E n 核能:核反应过程中放出的能量. 质能方程: E = m C2 核反应释放核能:ΔE = Δm C2 复习建议: 1,高中物理的主干知识为力学和电磁学,两部分内容各占高考的38℅,这些内容主要出现在计算题和实验题中. 力学的重点是:①力与物体运动的关系;②万有引力定律在天文学上的应用;③动量守恒和能量守恒定律的应用;④振动和波等等.⑤⑥ 解决力学问题首要任务是明确研究的对象和过程,分析物理情景,建立正确的模型.解题常有三种途径:①如果是匀变速过程,通常可以利用运动学公式和牛顿定律来求解;②如果涉及力与时间问题,通常可以用动量的观点来求解,代表规律是动量定理和动量守恒定律;③如果涉及力与位移问题,通常可以用能量的观点来求解,代表规律是动能定理和机械能守恒定律(或能量守恒定律).后两种方法由于只要考虑初,末状态,尤其适用过程复杂的变加速运动,但要注意两大守恒定律都是有条件的. 电磁学的重点是:①电场的性质;②电路的分析,设计与计算;③带电粒子在电场,磁场中的运动;④电磁感应现象中的力的问题,能量问题等等. 2,热学,光学,原子和原子核,这三部分内容在高考中各占约8℅,由于高考要求知识覆盖面广,而这些内容的分数相对较少,所以多以选择,实验的形式出现.但绝对不能认为这部分内容分数少而不重视,正因为内容少,规律少,这部分的得分率应该是很高的.
美美吻臭臭
要读书,但只读书就太可惜了无论你在哪里听到对父母的建议,一定都会有读书,可是读书对于孩子真的太枯燥了,文字本身就非常抽象,再加上背景知识的欠缺,孩子似懂非懂的情况下真的很难培养起读书的兴趣。而就算父母有时间,给孩子边读边讲,可这时孩子的参与度仍然很低。一边是父母读这些浅白幼稚的内容本身就很无聊,其次是孩子因为参与度低会自然遗忘,最后的结果往往就是不了了之。书倒是读了不少,可孩子获得的成长又有多少呢?而我的第一项就是把阅读与绘画结合!人类的发展过程有个形象生动的比喻:人类发展就好像42km的马拉松,从0-41km是非常难走的,从荒野到森林,从非洲到全世界,可人们对世界一无所知。.只有到最后1KM时,人类开始使用原始工具在洞穴上作画,然后慢慢发明了难以识别的文字,农业社会开始出现,离终点200米时出现了古罗马的城堡,100米时四大发现相继出现,50米时达芬奇站在那里洞察一切。.最后5米,星光闪耀着跑道,机器隆隆,飞机汽车轮船相继出现,声光电影让人眼花缭乱。可以说,绘画是埋藏在人基因里的种族天赋,人类就是从绘画开始创造出了灿烂的文明。孩子从1岁开始,这个天赋就会觉醒,只要大人不打压,不喜欢画画的孩子几乎没有。对于孩子,就要鼓励他,让他大胆的画,怎么想就怎么画,画一次就找个具体的点来称赞他,从幼儿园开始我就准备了一块黑板,全家人没事就在上面“创作”,这是奠基。6岁以前孩子不识字,主要是读图,小学后有了一定的抽象能力,加上他自己也能识字并通过拼音读书了,这时就可以与绘画结合了。平时我们大人讲个故事,可以顺便用图画还原场景,鼓励并引导孩子也这么做,这是非常棒的形象思维训练。而且大家一起画抽象画,本身就是其乐融融增强家庭和睦,亲子关系的重要手段。老听人说中国人缺乏想象力,尤其我学古体诗,这点感受更明确,李白以后人们的想象力真的极度匮乏。因为我们教育中充斥着太多的标准答案,父母对于孩子的评判标准单一,这都是硬生生的折断了孩子想象的翅膀。想象是什么?想象其实就是形象思维的高级形式,把脑子中那些已有的表象改造加工重组的过程。换句话说,我们现在帮孩子练习形象思维,就是在帮他插上想象的翅膀。想象与形象思维的过程本就是一样的,他会帮孩子具有自由,开放,浪漫,夸张,跳跃,形象等思维特质。无论孩子将来从事任何职业,特别是脑力相关的行业时,缺乏想象力都寸步难行。
chocolate宸
几何是初中数学中重要的一部分内容,考试时一般会出现在大题里。学习几何,需要证明,这时定理就很重要!下面归纳了初中所有数学定理。点的定理:1、过两点有且只有一条直线2、两点之间线段最短角的定理:1、同角或等角的补角相等2、同角或等角的余角相等直线定理:1、过一点有且只有一条直线和已知直线垂直2、直线外一点与直线上各点连接的所有线段中,垂线段最短平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线互相平分推论:夹在两条平行线间的平行线段相等平行四边形判定定理:1.两组对角分别相等的四边形是平行四边形2.两组对边分别相等的四边形是平行四边形3.对角线互相平分的四边形是平行四边形4.一组对边平行相等的四边形是平行四边形矩形性质定理1:矩形的四个角都是直角矩形性质定理2:矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形矩形判定定理2:对角线相等的平行四边形是矩形菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角定理1:关于中心对称的两个图形是全等的定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1.在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半:L=(a+b)÷2S=L×h相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理:1.两角对应相等,两三角形相似(ASA)2.两边对应成比例且夹角相等,两三角形相似(SAS)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理3:三边对应成比例,两三角形相似(SSS)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理:1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比2.相似三角形周长的比等于相似比3.相似三角形面积的比等于相似比的平方任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值定理:过不共线的三个点,可以作且只可以作一个圆定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角6.圆的外切四边形的两组对边的和相等7.如果四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
优质考试培训问答知识库