• 回答数

    9

  • 浏览数

    115

十架方舟
首页 > 考试培训 > 大数据培训视频

9个回答 默认排序
  • 默认排序
  • 按时间排序

小牛丫头

已采纳

看情况吧,一般学校的话,比如这边是三年制大专

大数据培训视频

160 评论(10)

谁可知心029

大数据云计算课程视频教程推荐选择【达内教育】,该机构推出大数据云计算免费课程,供学员学习。大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。【云计算】是与信息技术、软件、互联网相关的一种服务,这种计算资源共享池叫做“云”,云计算把许多计算资源集合起来,通过软件实现自动化管理,只需要很少的人参与,就能让资源被快速提供。也就是说,计算能力作为一种商品,可以在互联网上流通,就像水、电、煤气一样,可以方便地取用,且价格较为低廉。感兴趣的话点击此处,免费学习一下想了解更多有关大数据云计算培训的相关信息,推荐咨询【达内教育】。达内与阿里、Adobe、红帽、ORACLE、微软、美国计算机行业协会(CompTIA)、百度等国际知名厂商建立了项目合作关系。共同制定行业培训标准,为达内学员提供高端技术、所学课程受国际厂商认可,让达内学员更具国际化就业竞争力。达内IT培训机构,试听名额限时抢购。

169 评论(12)

wangmiao1211

首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。

大数据

Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。

Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。

Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。

Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。

Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。

Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。

Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapReduce程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。

Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapReduce、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。

Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。

Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。

Spark:它是用来弥补基于MapReduce处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

200 评论(10)

腊肉炒豆丝

IT十八掌大数据视频高薪就业视频免费下载

链接:

IT十八掌大数据视频高薪就业视频|十八掌教育_徐培成_大数据Pyhton教程day01视频|十八掌教育_徐培成_Cloudera CDH5|Spark|Scala|18.【IT十八掌徐培成】Docker|17.电商项目|12.【IT十八掌徐培成】Storm|11.【IT十八掌徐培成】Pig|10.【IT十八掌徐培成】Sqoop|09.【IT十八掌徐培成】Kafka|08.【IT十八掌徐培成】Flume|07.【IT十八掌徐培成】HBase|06.【IT十八掌徐培成】Hive|05.【IT十八掌徐培成】ProtoBuf

142 评论(15)

梦回红楼

以下介绍的课程主要针对零基础大数据工程师每个阶段进行通俗易懂简易介绍,方面大家更好的了解大数据学习课程。课程框架是科多大数据的零基础大数据工程师课程。一、 第一阶段:静态网页基础(HTML+CSS)1. 难易程度:一颗星2. 课时量(技术知识点+阶段项目任务+综合能力)3. 主要技术包括:html常用标签、CSS常见布局、样式、定位等、静态页面的设计制作方式等4. 描述如下:从技术层面来说,该阶段使用的技术代码很简单、易于学习、方便理解。从后期课程层来说,因为我们重点是大数据,但前期需要锻炼编程技术与思维。经过我们多年开发和授课的项目经理分析,满足这两点,目前市场上最好理解和掌握的技术是J2EE,但J2EE又离不开页面技术。所以第一阶段我们的重点是页面技术。采用市场上主流的HTMl+CSS。二、 第二阶段:JavaSE+JavaWeb1. 难易程度:两颗星2. 课时量(技术知识点+阶段项目任务+综合能力)3. 主要技术包括:java基础语法、java面向对象(类、对象、封装、继承、多态、抽象类、接口、常见类、内部类、常见修饰符等)、异常、集合、文件、IO、MYSQL(基本SQL语句操作、多表查询、子查询、存储过程、事务、分布式事务)JDBC、线程、反射、Socket编程、枚举、泛型、设计模式4. 描述如下:称为Java基础,由浅入深的技术点、真实商业项目模块分析、多种存储方式的设计与实现。该阶段是前四个阶段最最重要的阶段,因为后面所有阶段的都要基于此阶段,也是学习大数据紧密度最高的阶段。本阶段将第一次接触团队开发、产出具有前后台(第一阶段技术+第二阶段的技术综合应用)的真实项目。三、 第三阶段:前端框架1. 难易程序:两星2. 课时量(技术知识点+阶段项目任务+综合能力):64课时3. 主要技术包括:Java、Jquery、注解反射一起使用,XML以及XML解析、解析dom4j、jxab、新特性、SVN、Maven、easyui4. 描述如下:前两个阶段的基础上化静为动,可以实现让我们网页内容更加的丰富,当然如果从市场人员层面来说,有专业的前端设计人员,我们设计本阶段的目标在于前端的技术可以更直观的锻炼人的思维和设计能力。同时我们也将第二阶段的高级特性融入到本阶段。使学习者更上一层楼。四、 第四阶段:企业级开发框架1. 难易程序:三颗星2. 课时量(技术知识点+阶段项目任务+综合能力)3. 主要技术包括:Hibernate、Spring、SpringMVC、log4j slf4j 整合、myBatis、struts2、Shiro、redis、流程引擎activity, 爬虫技术nutch,lucene,webServiceCXF、Tomcat集群和热备、MySQL读写分离4. 描述如下:如果将整个JAVA课程比作一个糕点店,那前面三个阶段可以做出一个武大郎烧饼(因为是纯手工-太麻烦),而学习框架是可以开一个星巴克(高科技设备-省时省力)。从J2EE开发工程师的任职要求来说,该阶段所用到的技术是必须掌握,而我们所授的课程是高于市场(市场上主流三大框架,我们进行七大框架技术传授)、而且有真实的商业项目驱动。需求文档、概要设计、详细设计、源码测试、部署、安装手册等都会进行讲解。五、 第五阶段: 初识大数据1. 难易程度:三颗星2. 课时量(技术知识点+阶段项目任务+综合能力)3. 主要技术包括:大数据前篇(什么是大数据,应用场景,如何学习大数据库,虚拟机概念和安装等)、Linux常见命令(文件管理、系统管理、磁盘管理)、Linux Shell编程(SHELL变量、循环控制、应用)、Hadoop入门(Hadoop组成、单机版环境、目录结构、HDFS界面、MR界面、简单的SHELL、java访问hadoop)、HDFS(简介、SHELL、IDEA开发工具使用、全分布式集群搭建)、MapReduce应用(中间计算过程、Java操作MapReduce、程序运行、日志监控)、Hadoop高级应用(YARN框架介绍、配置项与优化、CDH简介、环境搭建)、扩展(MAP 端优化,COMBINER 使用方法见,TOP K,SQOOP导出,其它虚拟机VM的快照,权限管理命令,AWK 与 SED命令)4. 描述如下:该阶段设计是为了让新人能够对大数据有一个相对的大概念怎么相对呢?在前置课程JAVA的学习过后能够理解程序在单机的电脑上是如何运行的。现在,大数据呢?大数据是将程序运行在大规模机器的集群中处理。大数据当然是要处理数据,所以同样,数据的存储从单机存储变为多机器大规模的集群存储。(你问我什么是集群?好,我有一大锅饭,我一个人可以吃完,但是要很久,现在我叫大家一起吃。一个人的时候叫人,人多了呢? 是不是叫人群啊!)那么大数据可以初略的分为: 大数据存储和大数据处理所以在这个阶段中呢,我们课程设计了大数据的标准:HADOOP大数据的运行呢并不是在咋们经常使用的WINDOWS 7或者W10上面,而是现在使用最广泛的系统:LINUX。六、 第六阶段:大数据数据库1. 难易程度:四颗星2. 课时量(技术知识点+阶段项目任务+综合能力)3. 主要技术包括:Hive入门(Hive简介、Hive使用场景、环境搭建、架构说明、工作机制)、Hive Shell编程(建表、查询语句、分区与分桶、索引管理和视图)、Hive高级应用(DISTINCT实现、groupby、join、sql转化原理、java编程、配置和优化)、hbase入门、Hbase SHELL编程(DDL、DML、Java操作建表、查询、压缩、过滤器)、细说Hbase模块(REGION、HREGION SERVER、HMASTER、ZOOKEEPER简介、ZOOKEEPER配置、Hbase与Zookeeper集成)、HBASE高级特性(读写流程、数据模型、模式设计读写热点、优化与配置)4. 描述如下:该阶段设计是为了让大家在理解大数据如何处理大规模的数据的同时。简化咋们的编写程序时间,同时提高读取速度。怎么简化呢?在第一阶段中,如果需要进行复杂的业务关联与数据挖掘,自行编写MR程序是非常繁杂的。所以在这一阶段中我们引入了HIVE,大数据中的数据仓库。这里有一个关键字,数据仓库。我知道你要问我,所以我先说,数据仓库呢用来做数据挖掘分析的,通常是一个超大的数据中心,存储这些数据的呢,一般为ORACLE,DB2,等大型数据库,这些数据库通常用作实时的在线业务。总之,要基于数据仓库分析数据呢速度是相对较慢的。但是方便在于只要熟悉SQL,学习起来相对简单,而HIVE呢就是这样一种工具,基于大数据的SQL查询工具,这一阶段呢还包括HBASE,它为大数据里面的数据库。纳闷了,不是学了一种叫做HIVE的数据“仓库”了么?HIVE是基于MR的所以查询起来相当慢,HBASE呢基于大数据可以做到实时的数据查询。一个主分析,另一个主查询七、 第七阶段:实时数据采集1. 难易程序:四颗星2. 课时量(技术知识点+阶段项目任务+综合能力)3. 主要技术包括:Flume日志采集,KAFKA入门(消息队列、应用场景、集群搭建)、KAFKA详解(分区、主题、接受者、发送者、与ZOOKEEPER集成、Shell开发、Shell调试)、KAFKA高级使用(java开发、主要配置、优化项目)、数据可视化(图形与图表介绍、CHARTS工具分类、柱状图与饼图、3D图与地图)、STORM入门(设计思想、应用场景、处理过程、集群安装)、STROM开发(STROM MVN开发、编写STORM本地程序)、STORM进阶(java开发、主要配置、优化项目)、KAFKA异步发送与批量发送时效,KAFKA全局消息有序,STORM多并发优化4. 描述如下:前面的阶段数据来源是基于已经存在的大规模数据集来做的,数据处理与分析过后的结果是存在一定延时的,通常处理的数据为前一天的数据。举例场景:网站防盗链,客户账户异常,实时征信,遇到这些场景基于前一天的数据分析出来过后呢?是否太晚了。所以在本阶段中我们引入了实时的数据采集与分析。主要包括了:FLUME实时数据采集,采集的来源支持非常广泛,KAFKA数据数据接收与发送,STORM实时数据处理,数据处理秒级别八、 第八阶段:SPARK数据分析1. 难易程序:五颗星2. 课时量(技术知识点+阶段项目任务+综合能力)3. 主要技术包括:SCALA入门(数据类型、运算符、控制语句、基础函数)、SCALA进阶(数据结构、类、对象、特质、模式匹配、正则表达式)、SCALA高级使用(高阶函数、科里函数、偏函数、尾迭代、自带高阶函数等)、SPARK入门(环境搭建、基础结构、运行模式)、Spark数据集与编程模型、SPARK SQL、SPARK 进阶(DATA FRAME、DATASET、SPARK STREAMING原理、SPARK STREAMING支持源、集成KAFKA与SOCKET、编程模型)、SPARK高级编程(Spark-GraphX、Spark-Mllib机器学习)、SPARK高级应用(系统架构、主要配置和性能优化、故障与阶段恢复)、SPARK ML KMEANS算法,SCALA 隐式转化高级特性4. 描述如下:同样先说前面的阶段,主要是第一阶段。HADOOP呢在分析速度上基于MR的大规模数据集相对来说还是挺慢的,包括机器学习,人工智能等。而且不适合做迭代计算。SPARK呢在分析上是作为MR的替代产品,怎么替代呢? 先说他们的运行机制,HADOOP基于磁盘存储分析,而SPARK基于内存分析。我这么说你可能不懂,再形象一点,就像你要坐火车从北京到上海,MR就是绿皮火车,而SPARK是高铁或者磁悬浮。而SPARK呢是基于SCALA语言开发的,当然对SCALA支持最好,所以课程中先学习SCALA开发语言。在科多大数据课程的设计方面,市面上的职位要求技术,基本全覆盖。而且并不是单纯的为了覆盖职位要求,而是本身课程从前到后就是一个完整的大数据项目流程,一环扣一环。比如从历史数据的存储,分析(HADOOP,HIVE,HBASE),到实时的数据存储(FLUME,KAFKA),分析(STORM,SPARK),这些在真实的项目中都是相互依赖存在的。

265 评论(9)

jingbin657501

如需大数据培训推荐选择【达内教育】,大数据学习课程如下:1、Java语言基础:大数据开发主要是基于JAVA,作为大数据应用的开发语言很合适。【Java语言】基础包括Java开发介绍、Java语言基础、Eclipse开发工具等。2、HTML、CSS与Java:网站页面布局、HTML5+CSS3基础、jQuery应用、Ajax异步交互等。3、Linux系统和Hadoop生态体系:大数据的开发的框架是搭建在Linux系统上面,Hadoop是一个大数据的基础架构,它能搭建大型数据仓库,PB级别数据的存储、外理、分析、统计等业务。4、分布式计算框架和SparkStrom生态体系:有一定的基础之后,需要学习Spark大数据处理技术、Mlib机器学习、GraphX图计算以及Strom技术架构基础和原理等知识。Spark在性能还是在方案的统一性方面都看着极大的优越性,可以对大数据进行综合外理:实时数据流外理,批处理和交互式查询。感兴趣的话点击此处,免费学习一下想了解更多有关大数据的相关信息,推荐咨询【达内教育】。秉承“名师出高徒、高徒拿高薪”的教学理念,是达内公司确保教学质量的重要环节。作为美国上市职业教育公司,诚信经营,拒绝虚假宣传是该机构集团的经营理念。该机构在学员报名之前完全公开所有授课讲师的授课安排及背景资料,并与学员签订《指定授课讲师承诺书》,确保学员利益。达内IT培训机构,试听名额限时抢购。

94 评论(8)

qq1138566105

随着IT时代逐渐开始向大数据DT时代迈进,只要有用户数据,那就可以在这个时代占有一席之地。所以,很多企业和个人纷纷开始向大数据靠拢,希望在岗起步的道路上能占有一个属于自己的数据空间,迎接以后更激烈的竞争环境。企业向大数据靠拢的方法就是招揽一些大数据方面的人才,而个人向大数据靠拢的方式就是去学习大数据。想学习大数据的人越来越多,但是,大数据到底学的课程是什么呢?这里,给大家详细的说一下大数据学习的课程,同时也是诸多大数据培训机构共同的课程。

第一阶段:大数据技术入门

1大数据入门:介绍当前流行大数据技术,数据技术原理,并介绍其思想,介绍大数据技术培训课程,概要介绍。

2Linux大数据必备:介绍Lniux常见版本,VMware虚拟机安装Linux系统,虚拟机网络配置,文件基本命令操作,远程连接工具使用,用户和组创建,删除,更改和授权,文件/目录创建,删除,移动,拷贝重命名,编辑器基本使用,文件常用操作,磁盘基本管理命令,内存使用监控命令,软件安装方式,介绍LinuxShell的变量,控制,循环基本语法,LinuxCrontab定时任务使用,对Lniux基础知识,进行阶段性实战训练,这个过程需要动手操作,将理论付诸实践。

3CM&CDHHadoop的Cloudera版:包含Hadoop,HBase,Hiva,Spark,Flume等,介绍CM的安装,CDH的安装,配置,等等。

第二阶段:海量数据高级分析语言

Scala是一门多范式的编程语言,类似于java,设计的初衷是实现可伸缩的语言,并集成面向对象编程和函数式编程的多种特性,介绍其优略势,基础语句,语法和用法, 介绍Scala的函数,函数按名称调用,使用命名参数函数,函数使用可变参数,递归函数,默认参数值,高阶函数,嵌套函数,匿名函数,部分应用函数,柯里函数,闭包,需要进行动手的操作。

第三阶段:海量数据存储分布式存储

1HadoopHDFS分布式存储:HDFS是Hadoop的分布式文件存储系统,是一个高度容错性的系统,适合部署在廉价的机器上,HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用,介绍其的入门基础知识,深入剖析。

2HBase分布式存储:HBase-HadoopDatabase是一个高可靠性,高性能,面向列,可伸缩的分布式存储系统,利用HBase技术可在廉价PC上搭建起大规模结构化存储集群,介绍其入门的基础知识,以及设计原则,需实际操作才能熟练。

第四阶段:海量数据分析分布式计算

1HadoopMapReduce分布式计算:是一种编程模型,用于打过莫数据集的并行运算。

2Hiva数据挖掘:对其进行概要性简介,数据定义,创建,修改,删除等操作。

3Spare分布式计算:Spare是类MapReduce的通用并行框架。

第五阶段:考试

1技术前瞻:对全球最新的大数据技术进行简介。

2考前辅导:自主选择报考工信部考试,对通过者发放工信部大数据技能认证书。

上面的内容包含了大数据学习的所有的课程,所以,如果有想学大数据的可以从这方面下手,慢慢的了解大数据。

266 评论(13)

小淘的萌

1、Java编程技术

Java编程技术是大数据学习的基础,Java是一种强类型语言,拥有极高的跨平台能力,可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等,是大数据工程师最喜欢的编程工具,因此,想学好大数据,掌握Java基础是必不可少的!

2、Linux命令

对于大数据开发通常是在Linux环境下进行的,相比Linux操作系统,Windows操作系统是封闭的操作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础操作命令。

3、Hadoop

Hadoop是大数据开发的重要框架,其核心是HDFS和MapReduce,HDFS为海量的数据提供了存储,MapReduce为海量的数据提供了计算,因此,需要重点掌握,除此之外,还需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高级管理等相关技术与操作!

4、Hive

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。

5、Avro与Protobuf

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。

6、ZooKeeper

ZooKeeper是Hadoop和Hbase的重要组件,是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组件服务等,在大数据开发中要掌握ZooKeeper的常用命令及功能的实现方法。

7、HBase

HBase是一个分布式的、面向列的开源数据库,它不同于一般的关系数据库,更适合于非结构化数据存储的数据库,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,大数据开发需掌握HBase基础知识、应用、架构以及高级用法等。

8、phoenix

phoenix是用Java编写的基于JDBC API操作HBase的开源SQL引擎,其具有动态列、散列加载、查询服务器、追踪、事务、用户自定义函数、二级索引、命名空间映射、数据收集、行时间戳列、分页查询、跳跃查询、视图以及多租户的特性,大数据开发需掌握其原理和使用方法。

9、Redis

phoenix是用Java编写的基于JDBC API操作HBase的开源SQL引擎,其具有动态列、散列加载、查询服务器、追踪、事务、用户自定义函数、二级索引、命名空间映射、数据收集、行时间戳列、分页查询、跳跃查询、视图以及多租户的特性,大数据开发需掌握其原理和使用方法。

262 评论(15)

一janice一

企业中都使用Linux来搭建部署大数据项目。学习熟悉关系型数据库Mysql以及Oracle,了解大数据的源头,数据从何而来,如何集成整合大数据,才能更好的了解大数据。扣丁平台大数据开发课程了解hadoop的用途,快速搭建hadoop实验环境,为以后学习和构建大数据项目打下坚实基础。

141 评论(11)

相关问答