• 回答数

    2

  • 浏览数

    139

我的猫叫毛毛
首页 > 考试培训 > 初一上学期数学期末考试题

2个回答 默认排序
  • 默认排序
  • 按时间排序

我是小鹿呀

已采纳

考试是检测你的学习情况,数学是重要的学科。下面由我给你带来关于七年级上学期期末数学考试试卷及答案,希望对你有帮助!

一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)

1. 下列四个数中最小的数是()

A. ﹣2 B. 0 C. ﹣ D. 5

考点: 有理数大小比较.

分析: 根据有理数的大小比较方法,找出最小的数即可.

解答: 解:∵﹣2<﹣<0<5,

∴四个数中最小的数是﹣2;

故选A.

点评: 此题考查了有理数的大小比较,用到的知识点是负数<0<正数,两个负数,绝对值大的反而小,是一道基础题.

2. 如图是某几何体的三视图,则该几何体的侧面展开图是()

A. B. C. D.

考点: 由三视图判断几何体;几何体的展开图.

分析: 由三视图可以看出,此几何体是一个圆柱,指出圆柱的侧面展开图即可.

解答: 解:根据几何体的三视图可以得到该几何体是圆柱,圆柱的侧面展开图是矩形,且高度=主视图的高,宽度=俯视图的周长.

故选A.

点评: 本题考查了由三视图判断几何体及几何体的侧面展开图的知识,重点考查由三视图还原实物图的能力,及几何体的空间感知能力,是立体几何题中的基础题.

3. 用一副三角板(两块)画角,不可能画出的角的度数是()

A. 15° B. 55° C. 75° D. 135°

考点: 角的计算.

专题: 计算题.

分析: 解答此题的关键是分清两块三角板的锐角度数的度数分别是多少,然后对应着4个选项再进行组合,看看可能画出的角的度数是多少即可.

解答: 解:两块三角板的锐角度数分别为:30°,60°;45°,45°

用一块三角板的45°角和另一块三角板的30°角组合可画出15°、75°角,

用一块三角板的直角和和另一块三角板的45°角组合可画出135°角,

无论两块三角板怎么组合也不能画出55°角.

故选B.

点评: 此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角度数的度数分别是多少,比较简单,属于基础题.

4. 实数a在数轴上的位置如图所示,则|a﹣|=()

A. a﹣ B. ﹣a C. a+ D. ﹣a﹣

考点: 实数与数轴.

分析: 首先观察数轴,可得a<,然后由绝对值的性质,可得|a﹣|=﹣(a﹣),则可求得答案.

解答: 解:如图可得:a<,

即a﹣<0,

则|a﹣|=﹣(a﹣)=﹣a.

故选B.

点评: 此题考查了利用数轴比较实数的大小及绝对值的定义等知识.此题比较简单,注意数轴上的任意两个数,右边的数总比左边的数大.

5. 用平面截一个正方体,可能截出的边数最多的多边形是()

A. 七边形 B. 六边形 C. 五边形 D. 四边形

考点: 截一个几何体.

分析: 用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形.

解答: 解:正方体有六个面,截面与其六个面相交最多得六边形,故选B.

点评: 本题考查正方体的截面.正方体的截面的四种情况应熟记.

6. 下列计算正确的是()

A. (2a2)3=6a6 B. a2•(﹣a3)=﹣a6

C. ﹣5a5﹣5a5=﹣10a5 D. 15a6÷3a2=5a3

考点: 整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.

分析: 根据整式的乘除,分别对各选项进行计算,即可得出答案.

解答: 解:A、(2a2)3=8a6,故A错误;

B、a2•(﹣a3)=﹣a5,故B错误;

C、﹣5a5﹣5a5=﹣10a5,故C正确;

D、15a6÷3a2=5a4,故D错误.

故答案选C.

点评: 此题考查了整式的乘除,解题时要细心,注意结果的符号.

7. 若a=﹣,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则正确的为()

A. a

考点: 负整数指数幂;有理数的乘方;零指数幂.

分析: 根据负整数指数幂、有理数的乘方、零指数幂的定义将a、b、c、d的值计算出来即可比较出其值的大小.

解答: 解:因为a=﹣﹣,

b=﹣3﹣2=﹣=﹣,

c=(﹣)﹣2==9,

d=(﹣)0=1,

所以c>d>a>b.

故选D.

点评: 本题主要考查了

(1)零指数幂,负整数指数幂和有理数的乘方运算:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.

(2)有理数比较大小:正数大于0;0大于负数;两个负数,绝对值大数的反而小.

8. 如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()

A. 30° B. 45° C. 50° D. 60°

考点: 角的计算.

专题: 计算题.

分析: 从如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.

解答: 解:∵∠AOB=∠COD=90°,∠AOD=150°

∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.

故选A.

点评: 此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.

9. 已知x=y,则下列各式:,其中正确的有()

A. 2个 B. 3个 C. 4个 D. 5个

考点: 等式的性质.

分析: 根据等式的性质进行解答即可.

解答: 解:∵x=y,

∴x﹣1=y﹣1,故本式正确;

∵x=y,

∴2x=2y,故2x=5y错误;

∵x=y,

∴﹣x=﹣y,故本式正确;

∵x=y,

∴x﹣3=y﹣3,

∴=,故本式正确;

当x=y=0时,无意义,故=1错误.

故选B.

点评: 本题考查的是等式的性质,熟知等式的基本性质1,2是解答此题的关键.

10. 一款新型的太阳能热水器进价2000元,标价3000元,若商场要求以利润率不低于5%的售价打折出售,则设销售员出售此商品最低可打x折,由题意列方程,得()

A. 3000x=2000(1﹣5%) B.

C. D.

考点: 由实际问题抽象出一元一次方程.

分析: 当利润率是5%时,售价最低,根据利润率的概念即可求出售价,进而就可以求出打几折.

解答: 解:设销售员出售此商品最低可打x折,

根据题意得:3000×=2000(1+5%),

故选D.

点评: 本题考查了由实际问题抽象出一元一次方程的知识,理解什么情况下售价最低,并且理解打折的含义,是解决本题的关键.

二、填空题(本大题共6小题,每小题3分,共18分)

11. 地球上的海洋面积约为36100万km2,可表示为科学记数法×108km2.

考点: 科学记数法—表示较大的数.

分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于36100万有9位,所以可以确定n=9﹣1=8.

解答: 解:36100万=361 000 000=×108.

故答案为:×108.

点评: 此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.

12. 如a<0,ab<0,则|b﹣a+3|﹣|a﹣b﹣9|的值为﹣6.

考点: 整式的加减;绝对值.

专题: 计算题.

分析: 由已知不等式判断得出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.

解答: 解:∵a<0,ab<0,

∴b>0,

∴b﹣a+3>0,a﹣b﹣9<0,

则原式=b﹣a+3+a﹣b﹣9=﹣6.

故答案为:﹣6.

点评: 此题考查了整式的加减,以及绝对值,熟练掌握运算法则是解本题的关键.

13. 如果y=﹣2x,z=2(y﹣1),那么2x﹣y﹣z=8x+2.

考点: 整式的加减.

专题: 计算题.

分析: 将第一个等式代入第二个等式中表示出z,将表示出的z与y代入原式计算即可得到结果.

解答: 解:将y=﹣2x代入得:z=2(y﹣1)=2(﹣2x﹣1)=﹣4x﹣2,

则2x﹣y﹣z=2x﹣(﹣2x)﹣(﹣4x﹣2)=2x+2x+4x+2=8x+2.

故答案为:8x+2.

点评: 此题考查了整式的加减,熟练掌握运算法则是解本题的关键.

14. 爷爷快八十大寿,小明想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑着说,“在日历上,那一天的上下左右4个日期的和正好等于爷爷的年龄”.小明爷爷的生日是20号.

考点: 一元一次方程的应用.

分析: 要求小莉的爷爷的生日,就要明确日历上“上下左右4个日期”的排布方法.依此列方程求解.

解答: 解:设那一天是x,则左日期=x﹣1,右日期=x+1,上日期=x﹣7,下日期=x+7,

依题意得x﹣1+x+1+x﹣7+x+7=80

解得:x=20

故答案是:20.

点评: 本题考查了一元一次方程的应用.此题关键是弄准日历的规律,知道左右上下的规律,然后依此列方程.

15. 若k为整数,则使得方程kx﹣5=9x+3的解是负整数的k值有1或5或7或8.

考点: 一元一次方程的解.

专题: 计算题.

分析: 方程移项合并,将x系数化为1,表示出方程的解,根据k为整数即可确定出k的值.

解答: 解:方程移项合并得:(k﹣9)x=8,

解得:x=,

由x为负整数,k为整数,得到k=8时,x=﹣8;k=5时,x=﹣2;当k=7时,x=﹣4,k=1,x=﹣1,

则k的值,1或5或7或8.

故答案为:1或5或7或8

点评: 此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.

16. 某家庭6月1日时电表显示的读数是121度,6月7日24时电表显示的读数是163度,从电表显示的读数中,估计这个家庭六月份(共30)的总用电量是180度.

考点: 用样本估计总体.

分析: 先计算出6月1日至7日每天的平均用电量,再乘以30即可解答.

解答: 解:6月1日到6月7日七天共用电163﹣121=42度,

则平均每天用电为42÷7=6度,

六月份30天总用电量为6×30=180度.

故答案为180.

点评: 此题考查了用样本估计总体,计算出前7天的用电量,即可估计30天的用电量.

三、解答题(本大题共8小题,共52分)

17. 计算:

(1)

(2).

考点: 有理数的混合运算;单项式乘单项式.

专题: 计算题.

分析: (1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;

(2)原式先计算乘方运算,再利用单项式乘以单项式法则计算即可得到结果.

解答: 解:(1)原式=﹣1×(﹣)×5+9×(﹣)

=3+2﹣

=3;

(2)原式=3a4b3c•a2c4

=3a6b3c5.

点评: 此题考查了有理数的混合运算,以及单项式乘单项式,熟练掌握运算法则是解本题的关键.

18. 解方程:.

考点: 解一元一次方程.

专题: 计算题.

分析: 方程去分母后,去括号,移项合并,将x系数化为1,即可求出解.

解答: 解:去分母得:4(2x﹣1)﹣3(2x﹣3)=12,

去括号得:8x﹣4﹣6x+9=12,

移项得:8x﹣6x=12+4﹣9,

合并得:2x=7,

解得:x=.

点评: 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将x系数化为1,求出解.

19. 先化简2(x2y+3xy2)﹣3(x2y﹣1)﹣2x2y﹣2,再求值,其中x=﹣2,y=2.

考点: 整式的加减—化简求值.

分析: 原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.

解答: 解:原式=2x2y+6xy2﹣3x2y+3﹣2x2y﹣2

=﹣3x2y+6xy2﹣2,

当x=﹣2,y=2时,原式=﹣24﹣24﹣2=﹣50.

点评: 此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.

20. 小明、小颖、小彬周末计划去儿童村参加劳动,他们家分别在如图所示的A、B、C三点,他们三人约定在D处集合.已知集合地点在点C的南偏西30°,且到点的距离是点B到点A,点B到点C的距离的和,请你用直尺(无刻度)、圆规和量角器在下图中确定点D的位置.(不写作法,保留作图痕迹,写出结论)

考点: 作图—应用与设计作图;方向角.

分析: 首先作出过点C南偏西30°的射线,进而截取CD=BC+AB,即可得出答案.

解答: 解:如图所示:D点位置即为所求.

点评: 此题主要考查了应用设计与作图以及方向角问题,根据题意利用圆规截取得出CD=BC+AB进而得出D点位置是解题关键.

21. 已知一条射线OA,如果从O点再引两条射线OB和OC,使∠AOB=60°,∠BOC=20°,OD是∠AOB的平分线,求∠COD的度数.

考点: 角的计算;角平分线的定义.

分析: 分类讨论:OC在∠AOB外,OC在∠AOB内两种情况.

根据角平分线的性质,可得∠BOD与∠AOB的关系,再根据角的和差,可得答案.

解答: 解:①OC在∠AOB外,如图

OD是∠AOB的平分线,∠AOB=60°,

∠B0D=∠AOB=30°,

∠COD=∠B0D+∠BOC

=30°+20°

=50°;

②OC在∠AOB内,如图

OD是∠AOB的平分线,∠AOB=60°,

∠B0D=∠AOB=30°,

∠COD=∠B0D﹣∠BOC

=30°﹣20°

=10°.

点评: 本题考查了角的计算,先根据角平分线的性质,求出∠BOD,在由角的和差,得出答案,分了讨论是解题关键.

22. 若2x+5y﹣3=0,求4x•32y的值.

考点: 同底数幂的乘法;幂的乘方与积的乘方.

分析: 由方程可得2x+5y=3,再把所求的代数式化为同为2的底数的代数式,运用同底数幂的乘法的性质计算,最后运用整体代入法求解即可.

解答: 解:4x•32y=22x•25y=22x+5y

∵2x+5y﹣3=0,即2x+5y=3,

∴原式=23=8.

点评: 本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.

23. 列一元一次方程解应用题

某自行车队进行训练,训练时所有队员都以35km/h的速度前进,突然,1号队员以45km/h的速度独自前进,行进一段路程后又调转车头,仍以45km/h的速度往回骑,直到与其他队员汇合,1号队员从离队开始到与其他队员重新汇合共行进了15分钟,问1号队员掉转车头时离队的距离是多少km?

考点: 一元一次方程的应用.

分析: 设1号队员掉转车头时独自前进的时间为x小时,则回走用的时间为(﹣x)小时,根据追击问题与相遇问题的数量关系建立方程求出其解既可以求出结论.

解答: 解:设1号队员掉转车头时独自前进的时间为x小时,则回走用的时间为(﹣x)小时,由题意,得

(45﹣35)x=(45+35)(﹣x),

解得:x=.

∴1号队员掉转车头时离队的距离是:(45﹣35)×=km.

答:1号队员掉转车头时离队的距离是km.

点评: 本题考查了行程问题的数量关系的运用,追击问题的数量关系的运用,相遇问题的数量关系的运用,解答时根据行程问题的数量关系建立方程是关键.

24. 某区七年级有3000名学生参加“中华梦,我的梦”知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分进行统计,请你根据下列不完整的表格,回答按下列问题:

成绩x(分) 频数

50≤x<60 10

60≤x<70 16

70≤x<80 a

80≤x<90 62

90≤x<100 72

(1)a=40;

(2)补全频数分布直方图;

(3)若将得分转化为等级,规定50≤x<60评为“D”,60≤x<70评为“C”,70≤x<90评为“B”,90≤x<100评为“A”.这次全区七年级参加竞赛的学生约有多少学生参赛成绩被评为“D”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩等级是哪一个等级的可能性大?请说明理由.

考点: 频数(率)分布直方图;频数(率)分布表;可能性的大小.

分析: (1)根据样本容量为200,再利用表格中数据可得出a的值;

(2)利用表中数据得出70≤x<80分数段的频数,补全条形图即可;

(3)找出样本中评为“D”的百分比,估计出总体中“D”的人数即可;求出等级为A、B、C、D的概率,表示大小,即可作出判断.

解答: 解:(1)根据题意得出;a=200﹣10﹣16﹣62﹣72=40,

故答案为:40;

(2)补全条形统计图,如图所示:

;

(2)由表格可知:评为“D”的频率是=,

由此估计全区八年级参加竞赛的学生约有×3000=150(人)被评为“D”;

∵P(A)=;P(B)=;P(C)=;P(D)=,

∴P(B)>P(A)>P(C)>P(D),

∴随机调查一名参数学生的成绩等级“B”的可能性较大.

点评: 此题考查了频数(率)分布直方图,频数(率)分布表,以及可能性大小,弄清题意是解本题的关键.

初一上学期数学期末考试题

145 评论(13)

吴珊珊珊

人生无时无刻不处于考试,在学习的考试成绩由分数来证明自己,下面给大家带来一些关于七年级上册数学期末考试试题两套,希望对大家有所帮助。

七年级上册数学期末考试试题两套1

、选择题(共10小题,每小题3分,共30分)

(-3)的绝对值是()

年5月12日,利用微软Windows漏洞爆发的wannaCry勒索病毒,目前已席卷全球150多个国家,至少30万台电脑中招,预计造成的经济损失将达到80亿美元,世人再次领教了黑客的厉害.将数据80亿用科学记数法表示为()

×108 ×109 ×109 ×1010

3.下列计算正确的个数是()

①a2+a2=a4;②3xy2-2xy2=1;③3ab-2ab=ab;④(-2)3-(-3)2=-17.

个 个 个 个

4.一个几何体的表面展开图如图所示,则这个几何体是()

A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱

5.已知代数式2a2-b=7,则-4a2+2b+10的值是()

6.若方程(m2-1)x2-mx-x+2=0是关于x的一元一次方程,则代数式|m-1|的值为()

或2

7.某商店换季促销,将一件标价为240元的T恤8折售出,获利20%,则这件T恤的成本为()

元 元 元 元

8.如图,数轴上A、B、C三点所表示的数分别是a、6、c.已知AB=8,a+c=0,且c是关于x的方程(m-4)x+16=0的一个解,则m的值为()

点15分,钟表的时针与分针所夹的小于平角的角的度数为()

° ° ° °

10.如图是某月的月历表,在此月历表上可以用一个长方形圈出3×3个位置的9个数(如3,4,5,10,11,12,17,18,19).若用这样的矩形圈出这张月历表上的9个数,则圈出的9个数的和不可能为下列数中的()

二、填空题(共6小题,每小题3分,共18分)

11.如图,已知∠AOB=90°.若∠1=35°,则∠2的度数是W.

第11题图 第12题图

12.如图,数轴上A表示的数为1,B表示的数为-3,则线段AB中点表示的数为.

13.已知关于x的多项式(m-1)x4-xn+2x-5是三次三项式,则(m+1)n的值为.

14.若方程x+5=7-2(x-2)的解也是方程6x+3k=14的解,则常数k=.

15.机械加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套.

16.有一列数:a1,a2,a3,a4 ,…,an-1,an,其中a1=5×2+1,a2=5×3+2,a3=5×4+3,a4=5×5+4,a5=5×6+5,….当an=2021时,n的值为.

三、解答题(共8小题,共72分)

17.(8分)计算:

(1)(-1)2×5+(-2)3÷4; (2)58-23×24+14÷-123+|-22|.

18.(8分)解方程:

(1)x-12(3x-2)=2(5-x); (2)x+24-1=2x-36.

19.(8分)已知关于x的多项式mx2-mx-2与3x2+mx+m的和是单项式,求代数式m2-2m+1的值.

20.(8分)如图所示是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.

(1)填空:a=,b=,c=;

(2)先化简,再求值:5a2b-[2a2b-3(2abc-a2b)]+4abc.

21.(8分)如图,BD平分∠ABC,BE把∠ABC分成2∶5的两部分,∠DBE=21°,求∠ABC的度数.

22.(10分)台湾是中国领土不可分割的一部分,两岸在政治、经济、 文化 等领域交流越来越深,在北京故宫博物院成立90周年院庆时,两岸故宫同根同源,合作举办了多项纪念活动.据统计,北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中台北故宫博物院藏品数量比北京故宫博物院藏品数量的12还少25万件,求北京故宫博物院约有多少万件藏品?

23.(10分)某班准备买一些 乒乓球 和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒),现只到一家商店购买,问:

(1)当购买乒乓球多少盒时,两种优惠办法付款一样?

(2)当分别购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?

24.(12分)如图,已知点O表示原点,点A在数轴上表示的数为a,点B表示的数为b,且a、b满足|a+3|+(b-2)2=0.

(1)求点A、B所表示的数;

(2)点C在数轴上表示的数为x,且x是方程2x+1=12x-8的解.

①求线段BC的长;

②在数轴上是否存在点P,使PA+PB=BC?若存在,求出点P对应的数;若不存在,说明理由.

参考答案与解析

°

17.解:(1)原式=3.(4分)(2)原式=19.(8分)

18.解:(1)x=6.(4分)(2)x=0.(8分)

19.解:mx2-mx-2+3x2+mx+m=(m+3)x2+m-2.(2分)因为其和为单项式,所以m+3=0或m-2=0,即m=-3或m=2.(4分)当m=-3时,原式=(-3)2-2×(-3)+1=16;(6分)当m=2时,原式=22-2×2+1=1.(8分)

20.解:(1)1-2-3(3分)

(2)5a2b-[2a2b-3(2abc-a2b)]+4abc=5a2b-(2a2b-6abc+3a2b)+4abc=5a2b-2a2b+6abc-3a2b+4abc=10abc.(6分)当a=1,b=-2,c=-3时,原式=10×1×(-2)×(-3)=10×6=60.(8分)

21.解:设∠ABE=2x°,则∠CBE=5x°,∠ABC=7x°.(2分)又BD为∠ABC的平分线,所以∠ABD=12∠ABC=72x°,(4分)∠DBE=∠ABD-∠ABE=72x°-2x°=32x°=21°.(6分)所以x=14,所以∠ABC=7x°=98°.(8分)

22.解:设北京故宫博物院约有x万件藏品,则台北故宫博物院约有12x-25万件藏品.(2分)根据题意列方程得x+12x-25=245,(5分)解得x=180.(8分)

答:北京故宫博物院约有180万件藏品.(10分)

23.解:(1)设购买x盒乒乓球时,两种优惠办法付款一样.根据题意有30×5+(x-5)×5=(30×5+5x)×,解得x=20.

答:购买20盒乒乓球时,两种优惠办法付款一样.(4分)

(2)当购买15盒时,甲店需付款30×5+(15-5)×5=200(元),乙店需付款 (30×5+15×5)×(元).因为200<,所以去甲店合算.(7分)当购买30盒时,甲店需付款30×5+(30-5)×5=275(元),乙店需付款(30×5+30×5)×(元).因为275>270,所以去乙店合算.(10分)

24.解:(1)因为|a+3|+(b-2)2=0,所以a+3=0,b-2=0,解得a=-3,b=2,即点A表示的数是-3,点B表示的数是2.(4分)

(2)①解2x+1=12x-8得,x=-6,所以BC=2-(-6)=8,即线段BC的长为8.(8分)

②存在点P,使PA+PB=BC.设点P表示的数为m,则|m-(-3)|+|m-2|=8,所以|m+3|+|m-2|=8.(10分)当m>2时,解得m=;当-3

七年级上册数学期末考试试题两套2

一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)

1.如果水库水位上升2m记作+2m,那么水库水位下降2m记作()

2.下列式子计算正确的个数有()

①a2+a2=a4;②3xy2-2xy2=1;③3ab-2ab=ab;④(-2)3-(-3)2=-17.

个 个 个 个

3.一个几何体的表面展开图如图所示,则这个几何体是()

A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱

4.已知2016xn+7y与-2017x2m+3y是同类项,则(2m-n)2的值是()

5.某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,则这件T恤的成本为()

元 元

元 元

6.如图,用同样规格的黑白两种正方形瓷砖铺设地面,观察图形并猜想,当黑色瓷砖为28块时,白色瓷砖的块数为()

块 块

块 块

二、填空题(本大题共6小题,每小题3分,共18分)

的倒数是________.

8.如图,已知∠AOB=90°,∠1=35°,则∠2的度数是________.

9.若多项式2(x2-xy-3y2)-(3x2-axy+y2)中不含xy项,则a=________,化简结果为____________.

10.若方程6x+3=0与关于y的方程3y+m=15的解互为相反数,则m=________.

11.机械加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排________名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套.

12.若线段AB=6cm,M是线段AB的三等分点,N是线段AM的中点,则线段MN的长为________.

三、(本大题共5小题,每小题6分,共30分)

13.(1)计算:()+();

(2)化简:5xy-x2-xy+3x2-2x2.

14.计算:

(1)(-1)2×5+(-2)3÷4;

(2)58-23×24+14÷-123+|-22|.

15.化简求值:5a+3b-2(3a2-3a2b)+3(a2-2a2b-2),其中a=-1,b=2.

16.解方程:

(1)x-12(3x-2)=2(5-x);

(2)x+24-1=2x-36.

17.如图,BD平分∠ABC,BE把∠ABC分成2∶5的两部分,∠DBE=21°,求∠ABC的度数.

四、(本大题共3小题,每小题8分,共24分)

18.用“⊕”和“⊙”定义两种新运算,对于任意的有理数a,b都有a⊕b=a+2b,a⊙b=a×b-2.

(1)求(1⊕2)⊙3的值;

(2)当x为有理数时,化简(x⊕2)-(x⊙3).

19.列方程解应用题:2018年元月初,我国中东部地区普降 大雪 ,某武警部队战士在两个地方进行救援工作,甲处有130名武警部队战士,乙处有70名武警部队战士.现在又调来200名武警部队战士支援,要使甲处的人数比乙处人数的2倍多10人,应往甲、乙两处各调去多少名武警部队战士?

20.已知数轴上的点A和点B之间的距离为32个单位长度,点A在原点的左边,距离原点5个单位长度,点B在原点的右边.

(1)点A所对应的数是________,点B所对应的数是________;

(2)若已知在数轴上的点E从点A处出发向左运动,速度为2个单位长度/秒,同时点F从点B处出发向左运动,速度为4个单位长度/秒,在点C处点F追上了点E,求点C所对应的数.

五、(本大题共2小题,每小题9分,共18分)

21.已知m,n满足(m-6)2+|n-2|=0.

(1)求m,n的值;

(2)已知线段AB=m,在直线AB上取一点P,使AP=nPB,Q为PB的中点,求线段AQ的长.

22.某大型超市“ 重阳节 ”期间感恩大回馈:购物不超过300元没有优惠;超过300元,而不超过600元优惠20%;超过600元的,其中600元按8折优惠,超过部分按7折优惠.小颖的妈妈两次购物分别用了210元和550元,问:

(1)小颖的妈妈两次购买的物品原价各是多少钱?

(2)在这次活动中她节省了多少钱?

(3)小颖的妈妈一次性购买这些物品,与分开购买相比是节省还是亏损?

六、(本大题共12分)

23.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.

(1)如图①,若∠AOC=30°,求∠DOE的度数;

(2)在图①中,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);

(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置.

①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;

②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.

参考答案与解析

解析:由题意得2m+3=n+7,移项得2m-n=4,所以(2m-n)2=16.故选A.

°

或2cm

13.解:(1)原式=.(3分)

(2)原式=5xy-xy=4xy.(6分)

14.解:(1)原式=3.(3分)(2)原式=19.(6分)

15.解:原式=5a+3b-6a2+6a2b+3a2-6a2b-6=5a+3b-3a2-6.(3分)当a=-1,b=2 时,原式=5×(-1)+3×2-3×(-1)2-6=-5+6-3-6=-8.(6分)

16.解:(1)x=6.(3分)(2)x=0.(6分)

17.解:设∠ABE=2x°,则∠CBE=5x°,∠ABC=7x°.(1分)又因为BD为∠ABC的平分线,所以∠ABD=12∠ABC=72x°,(2分)∠DBE=∠ABD-∠ABE=72x°-2x°=32x°=21°.(3分)所以x=14,所以∠ABC=7x°=98°.(6分)

18.解:(1)∵1⊕2=1+2×2=5,(2分)∴(1⊕2)⊙3=5⊙3=5×3-2=13.(4分)

(2)∵x⊕2=x+2×2=x+4,x⊙3=3x-2,(6分)∴(x⊕2)-(x⊙3)=(x+4)-(3x-2)=-2x+6.(8分)

19.解:设应往甲处调去x名武警部队战士,则向乙处调去(200-x)名武警部队战士.根据题意,得130+x=2(70+200-x)+10,(3分)解得x=140,∴200-x=60.(7分)

答:应往甲处调去140名,往乙处调去60名武警部队战士.(8分)

20.解:(1)-527(3分)

(2)设经过x秒点F追上点E,根据题意得2x+32=4x,解得x=16.(6分)则点C所对应的数为-5-2×16=-37.(8分)

21.解:(1)由题意得(m-6)2=0,|n-2|=0,所以m=6,n=2.(3分)

(2)当点P在线段AB上时,AP=2PB,所以AP=4,PB=2.而Q为PB的中点,所以PQ=1,故AQ=AP+PQ=5;(5分)当点P在线段AB的延长线上时,AP-PB=AB,即2PB-PB=6,所以PB=6.而Q为PB的中点,所以BQ=3,AQ=AB+BQ=6+3=9.(8分)故线段AQ的长为5或9.(9分)

22.解:(1)∵300×(1-20%)=240(元),600×(1-20%)=480(元)<550元,∴小颖妈妈第一次购买的物品原价是210元,第二次购买物品原价大于600元.(2分)设小颖妈妈第二次购买的物品原价是x元.600×80%+70%(x-600)=550,解得x=700,∴小颖妈妈第二次购买的物品原价是700元.(4分)

(2)由题意得700-550=150(元).故在这次活动中她节省了150元钱.(6分)

(3)由题意得210+700=910(元),600×80%+70%×(910-600)=697(元).由210+550=760(元),697<760,故与分开购买相比更节省.(9分)

23.解:(1)由题意得∠BOC=180°-∠AOC=150°,又∵∠COD是直角,OE平分∠BOC,∴∠DOE=∠COD-∠COE=∠COD-12 ∠BOC=90°-12×150°=15°.(3分)

(2)∠DOE=12α.(6分)解析:由(1)知∠DOE=∠COD-12∠BOC=∠COD-12(180°-∠AOC)=90°-12(180°-α)=12α.

(3)①∠AOC=2∠DOE.(7分)理由如下:∵∠COD是直角,OE平分∠BOC,∴∠COE=∠BOE=90°-∠DOE,∴∠AOC=180°-∠BOC=180°-2∠COE=180°-2(90°-∠DOE)=2∠DOE.(9分)

②4∠DOE-5∠AOF=180°.(10分)理由如下:设∠DOE=x,∠AOF=y,由①知∠AOC=2∠DOE,∴∠AOC-4∠AOF=2∠DOE-4∠AOF=2x-4y,2∠BOE+∠AOF=2(∠COD-∠DOE)+∠AOF=2(90°-x)+y=180°-2x+y,∴2x-4y=180°-2x+y,即4x-5y=180°,∴4∠DOE-5∠AOF=180°.(12分)

七年级上册数学期末考试试题两套相关 文章 :

★ 人教版七年级数学上册期末试卷及答案2017年

★ 小升初数学试卷两套试题

★ 人教版七年级数学上册期末考试试卷

★ 七年级数学期末考试试卷分析

★ 七年级数学上学期期末复习训练题

★ 初一年级上册数学的21个热门知识点

★ 人教版七年级数学期末考试试卷

★ 七年级数学期末考试卷

★ 初一数学上册期末考试预测题及答案

★ 初一上册常考的数学习题

102 评论(11)

相关问答