• 回答数

    2

  • 浏览数

    144

是芬妮呀
首页 > 考试培训 > 小升初考试数学

2个回答 默认排序
  • 默认排序
  • 按时间排序

ellalikesyou

已采纳

一、算术

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:a + b = b + a

3、乘法交换律:a × b = b × a

4、乘法结合律:a × b × c = a ×(b × c)

5、乘法分配律:a × b + a × c = a × b + c

6、除法的性质:a ÷ b ÷ c = a ÷(b × c)

7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

8、有余数的除法:被除数=商×除数+余数

二、方程、代数与等式

等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

方程式:含有未知数的等式叫方程式。

一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

代数:代数就是用字母代替数。

代数式:用字母表示的式子叫做代数式。如:3x =ab+c

三、体积和表面积

三角形的面积=底×高÷2。公式S= a×h÷2

正方形的面积=边长×边长公式S= a2

长方形的面积=长×宽公式S= a×b

平行四边形的面积=底×高公式S= a×h

梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2

内角和:三角形的内角和=180度。

长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2

正方体的表面积=棱长×棱长×6公式:S=6a2

长方体的体积=长×宽×高公式:V = abh

长方体(或正方体)的体积=底面积×高公式:V = abh

正方体的体积=棱长×棱长×棱长公式:V = a3

圆的周长=直径×π公式:L=πd=2πr

圆的面积=半径×半径×π公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

圆锥的体积=1/3底面×积高。公式:V=1/3Sh

四、分数

分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

分数乘分数,用分子相乘的积作分子,分母相乘的'积作为分母。

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。

分数除以整数(0除外),等于分数乘以这个整数的倒数。

分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小

分数的除法则:除以一个数(0除外),等于乘这个数的倒数。

真分数:分子比分母小的分数叫做真分数。

假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

带分数:把假分数写成整数和真分数的形式,叫做带分数。

分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

一.整数和小数

1.最小的一位数是1,最小的自然数是0

2.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。

3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……

4.小数的分类:小数 有限小数

无限循环小数

无限小数

无限不循环小数

5.整数和小数都是按照十进制计数法写出的数。

6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。

7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……

小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……

二.数的整除

1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。

2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。

3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。

4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。

质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数都有2个约数。

合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。合数至少有3个约数。

最小的质数是2,最小的合数是4

1~20以内的质数有:2、3、5、7、11、13、17、19

1~20以内的合数有“4、6、8、9、10、12、14、15、16、18

6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。

能被5整除的数的特征:个位上是0或者5的数,都能被5整除。

一、数列求和

等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:首项:等差数列的第一个数,一般用a1表示;

项数:等差数列的所有数的个数,一般用n表示;

公差:数列中任意相邻两个数的差,一般用d表示;

通项:表示数列中每一个数的公式,一般用an表示;

数列的和:这一数列全部数字的和,一般用Sn表示.

基本思路:等差数列中涉及五个量:a1 ,an,d, n, sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:通项公式:an = a1+(n-1)d;

通项=首项+(项数一1) ×公差;

数列和公式:sn,= (a1+ an)×n÷2;

数列和=(首项+末项)×项数÷2;

项数公式:n= (an- a1)÷d+1;

项数=(末项-首项)÷公差+1;

公差公式:d =(an-a1))÷(n-1);

公差=(末项-首项)÷(项数-1);

关键问题:确定已知量和未知量,确定使用的公式。

二、加法乘法原理和几何计数

加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法。

关键问题:确定工作的分类方法。

基本特征:每一种方法都可完成任务。

乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2....... ×mn种不同的方法。

关键问题:确定工作的完成步骤

基本特征:每一步只能完成任务的一部分。

直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

直线特点:没有端点,没有长度。

线段:直线上任意两点间的距离。这两点叫端点。

线段特点:有两个端点,有长度。

射线:把直线的一端无限延长。

射线特点:只有一个端点;没有长度

①数线段规律:总数=1+2+3+…+(点数一1);

②数角规律=1+2+3+…+(射线数一1);

③数长方形规律:个数=长的线段数×宽的线段数:

④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数。

小升初数学知识点:加法乘法原理和几何计数

三、质数与合数

质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。

合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。

质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。

分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。任何一个合数分解质因数的结果是唯一的。

分解质因数的标准表示形式:N= ,其中a1、a2、a3……an都是合数N的质因数,且a1……。

求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)

互质数:如果两个数的最大公约数是1,这两个数叫做互质数。

四、约数与倍数

约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

最大公约数的性质:

1、几个数都除以它们的最大公约数,所得的几个商是互质数

2、几个数的最大公约数都是这几个数的约数

3、几个数的公约数,都是这几个数的最大公约数的约数。

4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。

例如:12的约数有1、2、3、4、6、12;

18的约数有:1、2、3、6、9、18;

那么12和18的公约数有:1、2、3、6;

那么12和18最大的公约数是:6,记作(12,18)=6;

求最大公约数基本方法:

1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

2、短除法:先找公有的约数,然后相乘。

3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。

公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

12的倍数有:12、24、36、48……;

18的倍数有:18、36、54、72……;

那么12和18的公倍数有:36、72、108……;

那么12和18最小的公倍数是36,记作[12,18]=36;

最小公倍数的性质:

1、两个数的任意公倍数都是它们最小公倍数的倍数。

2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。

求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法。

20172017小升初数学复习重点大全 :约数与倍数

五、数的整除

一、基本概念和符号:

1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;

二、整除判断方法:

1. 能被2、5整除:末位上的数字能被2、5整除。

2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。

3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。

4. 能被3、9整除:各个数位上数字的和能被3、9整除。

5. 能被7整除:

①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

6. 能被11整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

7. 能被13整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除

三、整除的性质:

1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

20172017小升初数学复习重点大全 :数的整除

六、余数问题

余数的性质:

①余数小于除数。

②若a、b除以c的余数相同,则c|a-b或c|b-a。

③a与b的和除以c的余数等于a除以c的余数加上b除以c的余数的和除以c的余数。

④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的积除以c的余数

余数、同余与周期

一、同余的定义:

①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。

②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m

二、同余的性质:

①自身性:a≡a(mod m);

②对称性:若a≡b(mod m),则b≡a(mod m);

③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);

④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);

⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);

⑥乘方性:若a≡b(mod m),则an≡bn(mod m);

⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);

三、关于乘方的预备知识:

①若A=a×b,则MA=Ma×b=(Ma)b

②若B=c+d则MB=Mc+d=Mc×Md

四、被3、9、11除后的余数特征:

①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);

②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);

五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1(mod p)。

数学是小升初考试中的一个重要科目,所以我们在小升初总复习的时候,都会把数学作为一个重点。因为相对于其他科目来说,数学是拉分比较大的一个科目。为了使大家能够更好的复习,我们为大家整理了2017年小升初数学常见知识点,仅供参考。

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或小数+差=大数)

植树问题

1非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

小升初考试数学

90 评论(12)

专属兔兔的

数学知识点多如毛发。不积跬步,无以至千里;不积小流,无以成江海。对于考试而言,每天进步一点点,基础扎实一点点,通过考试就会更容易一点点。接下来是我为大家整理的小升初数学知识点 总结 ,希望大家喜欢!

↓↓↓点击获取更多"小升初知识点"↓↓↓

★ 历年小升初作文题目 ★

★ 小升初语文陈述句反问句互改 ★

★ 小升初英语语法必背知识点 ★

★ 小升初一至六年级数学知识点 ★

小升初数学知识点总结一

计算法则【整数、小数、分数】

一、计算整数加、减法要把相同数位对齐,从低位算起。

二、计算小数加、减法要把小数点对齐,从低位算起。

三、小数乘法:1、先按整数乘法算出积是多少,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

2、注意:在积里点小数点时,位数不够的,要在前面用0补足。

四、小数除法:

1、商的小数点要和被除数的小数点对齐;

2、有余数时,要在后面添0,继续往下除;

3、个位不够商1时,要在商的整数部分写0,点上小数点,再继续除。

4、把除数转化成整数时,除数的小数点向右移动几位,被除数的小数点也要向右移动几位。

5、当被除数的小数位数少于除数的小数位数时,要在被除数的末尾用0补足。

五、一个小数乘10、100、1000……只要把这个小数的小数点向右移动一位、两位、三位……

六、一个小数除以10、100、1000……只要把这个小数的小数点向左移动一位、两位、三位……

七、分数加、减法:1同分母分数相加减,把分子相加减,分母不变。2异分母分数相加减,要先通分化成同分母分数,然后再相加减。

八、分数大小的比较:1同分母分数相比较,分子大的大,分子小的小。2异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

九、分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

十、甲数除以乙数(0除外),等于甲数乘乙数的倒数。

小升初数学知识点总结二

用字母表示数

1、用字母表示数的意义和作用

_字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。

2、用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式

(1)常见的数量关系

路程用s表示,速度v用表示,时间用t表示,三者之间的关系:

s=vt

v=s/t

t=s/v

总价用a表示,单价用b表示,数量用c表示,三者之间的关系:

a=bc

b=a/c

c=a/b

(2)运算定律和性质

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

减法的性质:a-(b+c)=a-b-c

(3)用字母表示几何形体的公式

长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。

c=2(a+b)

s=ab

正方形的边长a用表示,周长用c表示,面积用s表示。

c=4a

s=a2

平行四边形的底a用表示,高用h表示,面积用s表示。

s=ah

三角形的底用a表示,高用h表示,面积用s表示。

s=ah/2

梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。

s=(a+b)h/2

s=mh

圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。

c=∏d=2∏r

s=∏r2

扇形的半径用r表示,n表示圆心角的度数,面积用s表示。

s=∏nr2/360

长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。

v=sh

s=2(ab+ah+bh)

v=abh

正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示.

s=6a2

v=a3

圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v表示.

s侧=ch

s表=s侧+2s底

v=sh

圆锥的高用h表示,底面积用s表示,体积用v表示.

v=sh/3

3、用字母表示数的写法

数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。

当“1”与任何字母相乘时,“1”省略不写。

在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。

用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。

4、将数值代入式子求值

_具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值。字母表示的是数,后面不写单位名称。

_一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。

小升初数学知识点总结三

年龄问题

年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。

常用的计算公式是:

成倍时小的年龄=大小年龄之差÷(倍数-1)

几年前的年龄=小的现年-成倍数时小的年龄

几年后的年龄=成倍时小的年龄-小的现在年龄

例父亲今年54岁,儿子今年12岁。几年后父亲的年龄是儿子年龄的4倍?

(54-12)÷(4-1) =42÷3 =14(岁)→儿子几年后的年龄

14-12=2(年)→2年后

答:2年后父亲的年龄是儿子的4倍。

例2、父亲今年的年龄是54岁,儿子今年有12岁。几年前父亲的年龄是儿子年龄的7倍?

(54-12)÷(7-1) =42÷6=7(岁)→儿子几年前的年龄

12-7=5(年)→5年前

答:5年前父亲的年龄是儿子的7倍。

例3、王刚父母今年的年龄和是148岁,父亲年龄的3倍与母亲年龄的差比年龄和多4岁。王刚父母亲今年的年龄各是多少岁?

(148×2+4)÷(3+1) =300÷4 =75(岁)→父亲的年龄

148-75=73(岁)→母亲的年龄

答:王刚的父亲今年75岁,母亲今年73岁。

或:(148+2)÷2 =150÷2 =75(岁) 75-2=73(岁)

小升初数学知识点总结四

数的性质和规律

一、商不变的规律

在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

二、小数的性质

在小数的末尾添上零或者去掉零小数的大小不变。

三、小数点位置的移动引起小数大小的变化

1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……

2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……

3. 小数点向左移或者向右移位数不够时,要用“0"补足位。

四、分数的基本性质

分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

五、分数与除法的关系

1. 被除数÷除数= 被除数/除数

2. 因为零不能作除数,所以分数的分母不能为零。

3. 被除数相当于分子,除数相当于分母。

小升初数学知识点总结五

速算口诀

1、十几乘十几:

口诀:头乘头,尾加尾,尾乘尾。

例:12×14=?

解:1×1=1

2+4=6

2×4=8

12×14=168

注:个位相乘,不够两位数要用0占位。

2、头相同,尾互补(尾相加等于10):

口诀:一个头加1后,头乘头,尾乘尾。

例:23×27=?

解:2+1=3

2×3=6

3×7=21

23×27=621

注:个位相乘,不够两位数要用0占位。

3、第一个乘数互补,另一个乘数数字相同:

口诀:一个头加1后,头乘头,尾乘尾。

例:37×44=?

解:3+1=4

4×4=16

7×4=28

37×44=1628

注:个位相乘,不够两位数要用0占位。

4、几十一乘几十一:

口诀:头乘头,头加头,尾乘尾。

例:21×41=?

解:2×4=8

2+4=6

1×1=1

21×41=861

5、11乘任意数:

口诀:首尾不动下落,中间之和下拉。

例:11×23125=?

解:2+3=5

3+1=4

1+2=3

2+5=7

2和5分别在首尾

11×23125=254375

注:和满十要进一。

6、十几乘任意数:

口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,

再向下落。

例:13×326=?

解:13个位是3

3×3+2=11

3×2+6=12

3×6=18

13×326=4238

注:和满十要进一。

小升初数学知识点总结相关 文章 :

★ 小升初数学知识考点归纳

★ 小升初数学知识点总结

★ 小升初数学考试知识点整理

★ 小升初数学知识点汇总与常见易错点

★ 小升初数学考试必备知识点与易错点

★ 小升初总复习数学

★ 小升初考试必备数学10大难点和34个重难点公式

★ 小升初数学考试易错点大总结

★ 小升初数学经典必考题型50道

★ 小升初数学知识点:统计图的意义与分类

285 评论(13)

相关问答