薰妍maggiel
7.某地海拔高度h与温度T的关系可用T=21﹣6h来表示(其中温度单位为℃,高度单位为千米),则该地区海拔高度为2000米的山顶上的温度是() ℃ ℃ C.﹣1179℃ ℃ 【考点】函数值. 【分析】首先把2000米化成2千米,然后把h=2代入T=21﹣6h,求出该地区海拔高度为2000米的山顶上的温度是多少即可. 【解答】解:2000米=2千米 h=2时, T=21﹣6h =21﹣6×2 =21﹣12 =9(℃) ∴该地区海拔高度为2000米的山顶上的温度是9℃. 故选:D. 【点评】此题主要考查了函数值的含义和求法,要熟练掌握,注意代入法的应用. 8.如图,∠1与∠2是对顶角的是() A. B. C. D. 【考点】对顶角、邻补角. 【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,依次判定即可得出答案. 【解答】解:A、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故A选项错误; B、∠1与∠2没有公共顶点,不是对顶角,故B选项错误; C、∠1与∠2的两边互为反向延长线,是对顶角,故C选项正确; D、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故D选项错误. 故选:C. 【点评】本题主要考查了对顶角的定义,对顶角是相对与两个角而言,是指的两个角的一种位置关系.它是在两直线相交的前提下形成的. 9.一蓄水池有水40m3,如果每分钟放出2m3的水,水池里的水量y(m3)与放水时间t(分)有如下关系: 放水时间(分) 1 2 3 4 … 水池中水量(m3) 38 36 34 32 … 下列结论中正确的是() 随t的增加而增大 B.放水时为20分钟时,水池中水量为8m3 与t之间的关系式为y=40﹣t D.放水时为18分钟时,水池中水量为4m3 【考点】一次函数的应用. 【分析】根据题意可得蓄水量y=40﹣2t,从而进行各选项的判断即可. 【解答】解:A、由题意可知y随t的增大而减小,故本选项错误; B、放水时问20分钟,水池中水量0,故本选项错误; C、根据题意可得y=40﹣2t,故本选项错误; D、放水时间18分钟,水池中水量4m3,故本选项正确; 故选D. 【点评】本题考查了一次函数的应用,解答本题的关键是根据题意确定函数关系式. 10.如图所示,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是() A.第3分时汽车的速度是40千米/时 B.第12分时汽车的速度是0千米/时 C.从第9分到第12分,汽车速度从60千米/时减少到0千米/时 D.从第3分到第6分,汽车行驶了120千米 【考点】函数的图象. 【分析】根据图象反映的速度与时间的关系,可以计算路程,针对每一个选项,逐一判断. 【解答】解:横轴表示时间,纵轴表示速度. 当第3分的时候,对应的速度是40千米/时,故选项A正确; 第12分的时候,对应的速度是0千米/时,故选项B正确; 从第9分到第12分,汽车对应的速度分别是60千米/时,0千米/时,所以汽车的速度从60千米/时减少到0千米/时,故选项C正确. 从第3分到第6分,汽车的速度保持不变,是40千米/时,行驶的路程为40× =2千米,故选项D错误; 综上可得:错误的是D. 故选:D. 【点评】此题主要考查了函数图象,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小. 二、填空题:每小题3分,共30分 11.计算:﹣b3•b2=﹣b5. 【考点】同底数幂的乘法. 【分析】原式利用同底数幂的乘法法则计算即可得到结果. 【解答】解:原式=﹣b3+2=﹣b5, 故答案为:﹣b5 【点评】此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键. 12.某红外线遥控器发出的红外线波长为,用科学记数法表示这个数是×10﹣7m. 【考点】科学记数法—表示较小的数. 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:×10﹣7; 故答案为:×10﹣7. 【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 13.若m+n=6,m2﹣n2=18,则(n﹣m)÷2=﹣. 【考点】平方差公式. 【分析】先根据平方差公式求出m﹣n,进而求出答案. 【解答】解:∵(m+n)(m﹣n)=m2﹣n2, ∴6(m﹣n)=18, ∴m﹣n=3, ∴n﹣m=﹣3, ∴(n﹣m)÷2=﹣3÷2=﹣. 故答案为﹣. 【点评】本题考查了平方差公式,解决本题的关键是熟记平方差公式. 14.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为(6a+15)cm2. 【考点】图形的剪拼. 【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算. 【解答】解:矩形的面积为: (a+4)2﹣(a+1)2 =(a2+8a+16)﹣(a2+2a+1) =a2+8a+16﹣a2﹣2a﹣1 =6a+15. 故答案为:(6a+15)cm2, 【点评】此题考查了图形的剪拼,关键是根据题意列出式子,运用完全平方公式进行计算,要熟记公式. 15.如图,由NO⊥l,MO⊥l,可以得出MO与NO重合,其中的理由是同一平面内,经过一点有且只有一条直线与已知直线垂直. 【考点】垂线. 【分析】利用平面内,经过一点有且只有一条直线与已知直线垂直,进行填空即可. 【解答】解:∵直线OM、ON都经过一个点O,且都垂直于l, ∴MO与NO重合, 故答案为同一平面内,经过一点有且只有一条直线与已知直线垂直. 【点评】本题考查了垂线,理解“垂直的定义”、“两点确定一条直线”、“垂线段最短”及“经过一点有且只有一条直线与已知直线垂直”的含义是解答本题的关键. 16.如图所示,已知∠C=100°,若增加一个条件,使得AB∥CD,试写出符合要求的一个条件∠BEC=80°等,答案不是唯一. 【考点】平行线的判定. 【分析】欲证AB∥CD,在图中发现AB、CD被一直线所截,且已知一同旁内角∠C=100°,故可按同旁内角互补两直线平行补充条件. 【解答】解:∵∠C=100°, 要使AB∥CD, 则要∠BEC=180°﹣100°=80°(同旁内角互补两直线平行). 【点评】解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力. 17.如图,已知AB∥CD,若∠A=110°,∠EDA=60°,则∠CDO=50°. 【考点】平行线的性质. 【分析】根据平行线的性质可得∠ADC=180°﹣∠A=70°,然后根据平角的定义即可得到结论. 【解答】解:∵AB∥CD, ∴∠ADC=180°﹣∠A=70°, ∵∠EDA=60°, ∴∠CDO=180°﹣60°﹣70°=50°, 故答案为:50°. 【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等. 18.一个梯形的下底长是上底长的5倍,高是4cm,则梯形的面积y与上底x之间的关系式为y=12x. 【考点】函数关系式. 【分析】根据梯形的面积= (上底+下底)×高,即可列出关系式. 【解答】解:∵梯形的下底长是上底长的5倍, ∴下底长为5x, ∴梯形的面积y= (x+5x)×4=12x; 故答案为:y=12x. 【点评】本题考查了函数关系式的知识,属于基础题,掌握梯形的面积公式是解题关键. 19.日常生活中,“老人”是一个模糊概念.可用“老人系数”表示一个人的老年化程度.“老人系数”的计算方法如下表: 人的年龄x(岁) x≤60 60

黑白配late
初一数学期中考试卷(满分120分,完卷90分钟)一、填空题(每小题2分,共30分)1、a的倒数与b的倒数的差,用代数式表示是。2、甲身高acm,乙比甲矮bcm,乙身高cm。3、代数式a2+b2的意义是。4、当x=,y=时,代数式x(x—y)=。5、规定了原点、正方向、和的直线叫做数轴。6、绝对值等于5的数是。7、与的大小关系是。8、在—36中,底数是。9、(—1)2001=。10、—(—3)=。11、如果—2x=10,那么x=。12、设a的相反数是最大的负整数,b的绝对值是最小的数,则b—a=。13、用科学计数法表示80340,应记作。14、—|—2|的相反数是。15、一个数的倒数是它本身,这个数是。二、选择题(从下面四个答案选出一个正确的答案,每小题3分,共18分)。1、在x=y,a,x+1,3x—2=0中有个是代数式。()A、1B、2C、3D、42、绝对值小于3的整数,有个。()A、7B、6C、5D、23、设a为任意,一个有理数,那么a2总是()A、比a大,B、非负数,C、正数D、比a小4、不等于零的两个互为相反数的数,它们的()A、积为—1B、积为1C、商为—1D、商为15、下列四个近似数中,含有三个有效数字的是()A、0.3140B、0.03140C、1.314D、314万6、下列说法正确的是()A、非负数是指正数和零,B、最小的整数的是0,C、整数就是正整数、负整数的统称,D、|—6|的相反数是6,三、解答题(共50分)1、计算(每小题6分,共18分)(1)、12—(—18)+(—7)—15(2)()×()÷()(3)—10+8÷(—2)2—(—4)×(—3)2、解方程(6分)3x—8=—243、在数轴上表示下列各数,再用“<”号把各数连接起来。(8分)+2,—(+4),+(),|—3|,—1.54、当a=—7,b=—9,c=—6时,求代数式。C2—的值。(8分)5、设(x—3)2+|y+1|=0,求代数式x2y2的值。(10分)四、列方程的应用题。(10分)甲以6千米/时的速度步行前往某地,过2.5小时之后,乙以18千米/时的速度骑自行车追甲,乙出发多少时间后可追上甲?五、设a是绝对值大于1而小于5的所有整数的和,b是不大于2的非负整数的和,求a、b,以及b—a的值。(12分)七年级数学科期中试卷一、填空题。(每小题4分,共32分)1、在平面直角坐标系中,点(-2,-1)在第_______象限。2、点(-3,5)到x轴上的距离是_______,到y轴上的距离是_______。3、将点(0,1)向下平移2个单位后,所得点的坐标为________。4、若∠1的对顶角是∠2,∠2的邻补角是∠3,∠3=45°,则∠1的度数为________。5、如图,a‖b,∠2=105°,则∠1的度数为______。6、在ΔABC中,∠A=45°,∠B=60°,则∠C的度数是__________。7、如图,AC平分∠BAD,∠DAC=∠DCA,填空:因为AC平分∠BAD,所以∠DAC=_______,又因为∠DAC=∠DCA,所以∠DCA=_______,所以AB‖_______。8.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,则∠1=_______,∠2=_______.二、选择题。(每小题5分,共40分)9、若点P(x,5)在第二象限内,则x应是()A、正数B、负数C、非负数D、有理数10、若y轴上的点P到x轴的距离为3,则点P的坐标是()A、(3,0)B、(0,3)C、(3,0)或(-3,0)D、(0,3)或(0,-3)11、一个长方形在平面直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是()A、(2,2)B、(3,2)C、(3,3)D、(2,3)12、如图,若a‖b,∠1=115°,则∠2=()A、55°B、60°C、65°D、75°13、下面生活中,物体的运动情况可以看成平移的是()A、时钟摆动的钟摆B、在笔直的公路上行驶的汽车C、随风摆动的旗帜D、汽车玻璃窗上两刷的运动14、在ΔABC中,∠A∶∠B∶∠C=2∶3∶4,则ΔABC是()A、锐角三角形B、直角三角形C、钝角三角形D、以上都不对15、已知三角形的三边长分别是3,8,x,若x的值为偶数,则满足条件的x的值有()A、1个B、2个C、3个D、4个16、可以把一个三角形分成面积相等的两部分的线段是()A、三角形的高B、三角形的角平分线C、三角形的中线D、无法确定三、解答题。(每小题8分,共48分)17、如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.(1)试证明∠B=∠ADG(2)求∠BCA的度数.18、多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示。可是她忘记了在图中标出原点和x轴、y轴。只知道马场的坐标为(-3,-3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?19.(本题满分6分)在直角坐标系中描出下列各组点,并将各组内点用线段依次连接起来:①(-6,5),(-10,3),,,(-2,3),(-6,5);②(-9,3),(-9,0),(-3,0),(-3,3)观察所得的图形,你觉得它像什么?答:20、如图,一轮船由B处向C处航行,在B处测得C处在B的北偏东75°方向上,在海岛上的观察所A测得B在A的南偏西30°方向上,C在A的南偏东25°方向。若轮船行驶到C处,那么从C处看A,B两处的视角∠ACB是多少度?21、如图,已知ΔABC是锐角三角形,且∠A=50,高BE、CF相交于点O,求∠BOC的度数。22.(6分)如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少?
落叶无声2015
数学七年级下册期中考试试题(满分:100分;考试时间:100分钟)一、选择题(下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在相应括号内. 注意可以用各种不同的方法来解决你面前的选择题哦!2×12=24分)1、点(-7,0)在( )A、 轴正半轴上 B、 轴负半轴上 C、 轴正半轴上 D、 轴负半轴上 2、下列方程是二元一次方程的是( )A、 B、 C、 D、 3、已知点P位于 轴右侧,距 轴3个单位长度,位于 轴上方,距离 轴4个单位长度,则点P坐标是( )A、(-3,4) B、(4,3) C、(-4,3) D、(3,4)4、将下列长度的三条线段首尾顺次相接,能组成三角形的是( )A、4cm 3cm 5cm B、1cm 2cm 3cm C、25cm 12cm 11cm D、2cm 2cm 4cm5、二元一次方程组 的解是( )A、 B、 C、 D、6、用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是( )A、正三角形 B、正方形 C、正五边形 D、正六边形7、已知ΔABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A,则此三角( )A、 一定有一个内角为45° B、一定有一个内角为60°C、一定是直角三角形 D、一定是钝角三角形8、如图,在4×4的正方形网格中,∠1、∠2、∠3的大小关系是( )A、∠1>∠2>∠3 B、∠1=∠2>∠3C、∠1<∠2=∠3 D、∠1=∠2=∠39、如图,∠2+∠3=180°,∠2=70°,∠4=80°,则∠1=( )A、 70° B、110° C、100° D、以上都不对10、如图,直线EF分别交CD、AB于M、N,且∠EMD=65°,∠MNB=115°,则下列结论正确的是( )A、∠A=∠C B、∠E=∠F C、AE‖FC D、AB‖DC第9题 第10题11、平面内有两两相交的三条直线,若最多有m个交点,最少有n个交点,则m+n等于( )A、1 B、2 C、3 D、412、若一个n 边形的所有内角与某个外角的和等于1350°,则n 为( )A、七 B、八 C、九 D、十二、填空题(开动你的脑筋, 将与题目条件有关的内容尽可能全面完整地填在答题卷相应的位置上. 大家都在为你加油啊!3×10=30分)13、剧院里5排2号可以用(5,2)表示,则7排4号用 表示。14、如果两个角是对顶角,且互补,则这两个角都是 角。15、△ABC中,若∠B=∠A+∠C,则△ABC是 三角形。16、在三角形已知两边的长分别为3cm和4cm,若第三边的长为偶数则第三边的长是 。17、若方程 2x + y = 是二元一次方程,则mn= 。18、每个外角都是36°的多边形的边数为 ,它的内角和为 。19、如图,已知AB‖CD,CM平分∠BCD,∠B=74°,CM⊥CN,则∠NCE的度数是 。20、已知如图,平行直线a、b被直线 所截,如果∠1=75°,则∠2= 。第19题 第20题21、写出一个解为 的二元一次方程组 。三、解答题(解答要求写出文字说明, 证明过程或计算步骤, 如果你觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以, 可不要有题目下面是空白的喔!共46分)22、解方程(8分)(1) (2) 23、作图题(6分)如图,在△ABC中,ÐBAC是钝角,画出:⑴ÐBAC的平分线AD;⑵AC边上的中线BE;⑶AB边上的高CF.24、(6分)某镇由于大力发展种植业和竹业加工业, 使农民今年的收入比去年多15%, 而支出比去年少10%. 已知去年收支相抵结余为400万元, 估计今年可结余860万元, 求去年的收入与支出各是多少万元?25、(5分)如图,直线AB‖CD,EF分别交AB、CD于点M、G,MN平分∠EMB,GH平分∠MGD,求证:MN‖GH。证明:∵AB‖CD(已知) ∴∠EMB=∠EGD( ) ∵MN平分∠EMB,GH平分∠MGD(已知) ∴∠1= ∠EMB,∠2= ∠MGD( ) ∴∠1=∠2 ∴MN‖GH( )26、(6分)如图,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95。(1)求∠DCA的度数(2)求∠DCE的度数。27、已知:如图,在△ABC中,∠BAC=900,AD⊥BC于D,AE平分∠DAC,∠B=500,求∠AEC的度数.(6分)28、(9分)在图所示的平面直角坐标系中表示下面各点A(0,3) B(1,-3) C(3,-5) D(-3,-5) E(3,5) F(5,7) (1)A点到原点O的距离是 。(2)将点C向 轴的负方向平移6个单位,它与点 重合。(3)连接CE,则直线CE与 轴是什么关系?(4)点F分别到 、 轴的距离是多少?
奇奇怪怪的lemon
七年级数学期中考试总是需要努力才能通过的,精神成就事业,态度决定一切。我整理了关于初一下册数学的期中试卷及参考答案,希望对大家有帮助! 初一下册数学期中试卷 一、选择题:每题3分,共30分 1.化简a23的结果为 2.下列分解因式中,结果正确的是 ﹣1=x﹣12 ﹣1=x+12 ﹣2=2x+1x﹣1 ﹣6x+9=xx﹣6+9 3.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是 A.∠3=∠4 B.∠D=∠DCE C.∠1=∠2 D.∠B=∠2 4.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为 ° ° ° ° 5.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是 ° ° ° ° 6.老师给出: , , 你能计算出 的值为 A、 B、 C、 D、 7.如果 , ,那么 三数的大小为 A. B. C. D. 8.如图,两个直角三角形重叠在一起,将其中一个三角形沿着BC边平移到△DEF的位置,∠B=90°,AB=10,DH=2,平移距离为3,则阴影部分的面积为 9.有一个两位数,它的十位数字与个位数字之和为6,则符合条件的两位数有 个 个 个 个 10.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2013,则m的值是 二、填空题:每空3分,共30分 11.多项式2a2b3+6ab2的公因式是 . 12.人体红细胞的直径约为,用科学记数法表示为 . 13.一个三角形的两条边长度分别为1和4,则第三边a可取 .填一个满足条件的数 14.如图,在△ABC中,沿DE摺叠,点A落在三角形所在的平面内的点为A1,若∠A=30°,∠BDA1=80°,则∠CEA1的度数为 . 15. 如图,直线 1∥ 2,AB⊥ 1,垂足为O,BC与 2相交于点E,若∠1=43°,则∠2= . 16.如图,将一张长方形纸片沿EF摺叠后,点D、C分别落在D′、C′的位置,ED′的延长线与BC交于点G.若∠EFG=55°,则∠1= °. 17. 一个多边形的每一个外角都是60°,则这个多边形是 边形,它的内角和是 °. 18.已知关于x、y的二元一次方程kx﹣2y=4的解是 ,则k=. 19. 用等腰直角三角板画 ,并将三角板沿 方向平移到如图所示的虚线处后绕点M逆时针方向旋转 ,则三角板的斜边与射线 的夹角 为 . 三、解答题本题共7题,共60分 20.计算:本题25分 1 ﹣2÷﹣ 0+﹣23; 22a﹣3b2﹣4aa﹣3b. 3分解因式:m4﹣2m2+1. 4解方程组 . 5先化简,再求值:4xx﹣1﹣2x+12x﹣1,其中x=﹣1. 21.画图并填空:本题6分 如图,△ABC的顶点都在方格纸的格点上,将△ABC向下平移2倍,再向右平移3格. 1请在图中画出平移后的△A′B′C′; 2在图中画出△的A′B′C′的高C′D′标出点D′的位置; 3如果每个小正方形边长为1,则△A′B′C′的面积= .答案直接填在题中横线上 22.本题6分甲乙两人相距10千米,两人同时出发,同向而行,甲小时可以追上乙;相向而行,1小时相遇,求两人的速度. 23.本题6分如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=40°,∠C=60°,求∠DAE的度数. 24.本题8分如图,CD⊥AB,EF⊥AB,垂足分别为D、F,∠1=∠2, 1试判断DG与BC的位置关系,并说明理由. 2若∠A=70°,∠BCG=40°,求∠AGD的度数. 25.本题9分如图①是一个长为2m、宽为2n的长方形,用剪刀沿图中的虚线将大长方形剪成四个相同的小长方形,然后按图②的形状拼成一个正方形° 1请你观察图②,利用图形的面积写出三个代数式m+n2、m-n2、mn之间的等量关系式;______________. 2根据2中的结论,若x+y=-6,xy=,则x-y= . 3有许多代数恒等式都可以用图形的面积来表示,如图③,它表示2m+nm+n=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示代数恒等式m+n m+3n=m2+4mn+3n2. 初一下册数学期中试卷参考答案 一、选择题:每题3分,共30分 题号 1 2 3 4 5 6 7 8 9 10 答案 B C C C B D C C B C 二、填空题:每空2分,共33分 11. 2ab2 12. ×10﹣6 13. 4 14. 20° 15. 110° 16. 70° 17. 六 、 720 18. ﹣5 19. 22° 三、解答题本题共8题,共60分 20.计算:本题25分 1原式=9÷1+﹣8=9﹣8=1; 2原式=4a2﹣12ab+9b2﹣4a2+12ab=9b2. 3原式=m2﹣12=m+12m﹣12. 4解: , ①×2+②得:5x=0,即x=0, 把x=0代入①得:y=2, 则方程组的解为 . 5解:原式=4x2﹣4x﹣4x2+1=﹣4x+1, 当x=﹣1时,原式=4+1=5. 21.画图并填空:本题6分 解:12略 3△A′B′C′的面积= ×3×3= . 22.本题6分 解:设甲的速度为x千米/小时,乙的而速度为y千米/小时, 由题意得, , 解得: . 答:甲的速度为7千米/小时,乙的度数为3千米/小时. 23.本题6分 解:∵∠B=40°,∠C=60°, ∴∠BAC=180°﹣∠B﹣∠C=80°, ∵AE平分∠BAC, ∴∠BAE= ∠BAC=40°, ∴∠AEC=∠B+∠BAE=80°, ∵AD⊥BC, ∴∠ADE=90°, ∴∠DAE=180°﹣∠ADE﹣∠AED=10°. 答:∠DAE的度数是10°. 24.本题8分 解:1DG与BC平行.理由如下: ∵CD⊥AB,EF⊥AB, ∴CD∥EF, ∴∠1=∠BCD, ∵∠1=∠2, ∴∠2=∠BCD, ∴DG∥BC; 2∵DG∥BC, ∴∠AGD=∠BCG=40°. 25.本题9分 1m+n2=m-n2+4mn 2±5 3略
优质考试培训问答知识库