贪吃的大吃货
从事大数据开发有大致有三个岗位:大数据开发工程师,大数据运维工程师,大数据分析师等。想要学好hadoop,spark,hbase相关的技术,需要自己付出很多时间和精力,可以更具自己的情况实地去取了解下。最关键的还是看看自己是否用心,加油
nanaxuanku
我们在前文中给大家简单介绍了关于大数据运维师的一些基本技能需求的内容。下面我们就一起来了解一下,在学习大数据的时候不同学习阶段都需要了解哪些知识。数据存储阶段:SQL,oracle,IBM等等都有相关的课程,贵阳java课程培训机构建议根据公司的不同,学习好这些企业的开发工具,基本可以胜任此阶段的职位。数据挖掘清洗筛选:大数据工程师,要学习JAVA,Linux,SQL,Hadoop,数据序列化系统Avro,数据仓库Hive,分布式数据库HBase,数据仓库Hive,Flume分布式日志框架,Kafka分布式队列系统课程,Sqoop数据迁移,pig开发,Storm实时数据处理。学会以上基本可以入门大数据工程师,如果想有一个更好的起点,建议前期学习scala编程,Spark,R语言等基本现在企业里面更专业的技能。数据分析:一方面是搭建数据分析框架,比如确定分析思路需要营销、管理等理论知识;还有针对数据分析结论提出有指导意义的分析建议。产品调整:经过分析后的数据交由老板和PM经过协商后进行产品的更新,然后交由程序员进行修改(快消类进行商品的上下架调整)。接着再来了解大数据需要掌握那些技术Hadoop核心(1)分布式存储基石:HDFSHDFS简介入门演示构成及工作原理解析:数据块,NameNode,DataNode、数据写入与读取过程、数据复制、HA方案、文件类型、HDFS常用设置JavaAPI代码演示(2)分布式计算基础:MapReduceMapReduce简介、编程模型、JavaAPI介绍、编程案例介绍、MapReduce调优(3)Hadoop集群资源管家:YARNYARN基本架构资源调度过程调度算法YARN上的计算框架离线计算(1)离线日志收集利器:FlumeFlume简介核心组件介绍Flume实例:日志收集、适宜场景、常见问题。(2)离线批处理必备工具:HiveHive在大数据平台里的定位、总体架构、使用场景之AccessLog分析HiveDDL&DML介绍视图函数(内置,窗口,自定义函数)表的分区、分桶和抽样优化。
加菲慢半拍oO
大数据主要学大数据分析挖掘与处理、移动开发与架构、软件开发、云计算等前沿技术等。
主修课程:面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。
旨在培养学生系统掌握数据管理及数据挖掘方法,具备大数据项目方案设计及实施等能力,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。
大数据专业就业方向:
1、Hadoop大数据开发方向
市场需求旺盛,是大数据培训的主体,目前IT培训机构的重点。对应岗位:大数据开发工程师、爬虫工程师、数据分析师等。
2、数据挖掘,数据分析&机器学习方向
学习起点高、难度大,市面上只有很少的培训机构在做。对应岗位:数据科学家、数据挖掘工程师、机器学习工程师等。
3、大数据运维&云计算方向
市场需求中等,更偏向于Linux、云计算学科。对应岗位:大数据运维工程师。
优质考试培训问答知识库