• 回答数

    7

  • 浏览数

    114

霸王V风月
首页 > 考试培训 > 数据培训课程

7个回答 默认排序
  • 默认排序
  • 按时间排序

hanzhe2013

已采纳

Sqoop:(发音:skup)作为一款开源的离线数据传输工具,主要用于Hadoop(Hive) 与传统数据库(MySql,PostgreSQL)间的数据传递。它可以将一个关系数据库中数据导入Hadoop的HDFS中,也可以将HDFS中的数据导入关系型数据库中。

Flume:实时数据采集的一个开源框架,它是Cloudera提供的一个高可用用的、高可靠、分布式的海量日志采集、聚合和传输的系统。目前已经是Apache的顶级子项目。使用Flume可以收集诸如日志、时间等数据并将这些数据集中存储起来供下游使用(尤其是数据流框架,例如Storm)。和Flume类似的另一个框架是Scribe(FaceBook开源的日志收集系统,它为日志的分布式收集、统一处理提供一个可扩展的、高容错的简单方案)大数据分析培训课程内容有哪些

Kafka:通常来说Flume采集数据的速度和下游处理的速度通常不同步,因此实时平台架构都会用一个消息中间件来缓冲,而这方面最为流行和应用最为广泛的无疑是Kafka。它是由LinkedIn开发的一个分布式消息系统,以其可以水平扩展和高吞吐率而被广泛使用。目前主流的开源分布式处理系统(如Storm和Spark等)都支持与Kafka 集成。

Kafka是一个基于分布式的消息发布-订阅系统,特点是速度快、可扩展且持久。与其他消息发布-订阅系统类似,Kafka可在主题中保存消息的信息。生产者向主题写入数据,消费者从主题中读取数据。浅析大数据分析技术

作为一个分布式的、分区的、低延迟的、冗余的日志提交服务。和Kafka类似消息中间件开源产品还包括RabbiMQ、ActiveMQ、ZeroMQ等。

MapReduce:MapReduce是Google公司的核心计算模型,它将运行于大规模集群上的复杂并行计算过程高度抽象为两个函数:map和reduce。MapReduce最伟大之处在于其将处理大数据的能力赋予了普通开发人员,以至于普通开发人员即使不会任何的分布式编程知识,也能将自己的程序运行在分布式系统上处理海量数据。

Hive:MapReduce将处理大数据的能力赋予了普通开发人员,而Hive进一步将处理和分析大数据的能力赋予了实际的数据使用人员(数据开发工程师、数据分析师、算法工程师、和业务分析人员)。大数据分析培训课程大纲

Hive是由Facebook开发并贡献给Hadoop开源社区的,是一个建立在Hadoop体系结构上的一层SQL抽象。Hive提供了一些对Hadoop文件中数据集进行处理、查询、分析的工具。它支持类似于传统RDBMS的SQL语言的查询语言,一帮助那些熟悉SQL的用户处理和查询Hodoop在的数据,该查询语言称为Hive SQL。Hive SQL实际上先被SQL解析器解析,然后被Hive框架解析成一个MapReduce可执行计划,并按照该计划生产MapReduce任务后交给Hadoop集群处理。

Spark:尽管MapReduce和Hive能完成海量数据的大多数批处理工作,并且在打数据时代称为企业大数据处理的首选技术,但是其数据查询的延迟一直被诟病,而且也非常不适合迭代计算和DAG(有限无环图)计算。由于Spark具有可伸缩、基于内存计算能特点,且可以直接读写Hadoop上任何格式的数据,较好地满足了数据即时查询和迭代分析的需求,因此变得越来越流行。

Spark是UC Berkeley AMP Lab(加州大学伯克利分校的 AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,它拥有Hadoop MapReduce所具有的优点,但不同MapReduce的是,Job中间输出结果可以保存在内存中,从而不需要再读写HDFS ,因此能更好适用于数据挖掘和机器学习等需要迭代的MapReduce算法。

Spark也提供类Live的SQL接口,即Spark SQL,来方便数据人员处理和分析数据。

Spark还有用于处理实时数据的流计算框架Spark Streaming,其基本原理是将实时流数据分成小的时间片段(秒或几百毫秒),以类似Spark离线批处理的方式来处理这小部分数据。

Storm:MapReduce、Hive和Spark是离线和准实时数据处理的主要工具,而Storm是实时处理数据的。

Storm是Twitter开源的一个类似于Hadoop的实时数据处理框架。Storm对于实时计算的意义相当于Hadoop对于批处理的意义。Hadoop提供了Map和Reduce原语,使对数据进行批处理变得非常简单和优美。同样,Storm也对数据的实时计算提供了简单的Spout和Bolt原语。Storm集群表面上和Hadoop集群非常像,但是在Hadoop上面运行的是MapReduce的Job,而在Storm上面运行的是Topology(拓扑)。

Storm拓扑任务和Hadoop MapReduce任务一个非常关键的区别在于:1个MapReduce Job最终会结束,而一个Topology永远运行(除非显示的杀掉它),所以实际上Storm等实时任务的资源使用相比离线MapReduce任务等要大很多,因为离线任务运行完就释放掉所使用的计算、内存等资源,而Storm等实时任务必须一直占有直到被显式的杀掉。Storm具有低延迟、分布式、可扩展、高容错等特性,可以保证消息不丢失,目前Storm, 类Storm或基于Storm抽象的框架技术是实时处理、流处理领域主要采用的技术。

Flink:在数据处理领域,批处理任务和实时流计算任务一般被认为是两种不同的任务,一个数据项目一般会被设计为只能处理其中一种任务,例如Storm只支持流处理任务,而MapReduce, Hive只支持批处理任务。

Apache Flink是一个同时面向分布式实时流处理和批量数据处理的开源数据平台,它能基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能。Flink在实现流处理和批处理时,与传统的一些方案完全不同,它从另一个视角看待流处理和批处理,将二者统一起来。Flink完全支持流处理,批处理被作为一种特殊的流处理,只是它的数据流被定义为有界的而已。基于同一个Flink运行时,Flink分别提供了流处理和批处理API,而这两种API也是实现上层面向流处理、批处理类型应用框架的基础。大数据分析要学什么

Beam:Google开源的Beam在Flink基础上更进了一步,不但希望统一批处理和流处理,而且希望统一大数据处理范式和标准。Apache Beam项目重点在于数据处理的的编程范式和接口定义,并不涉及具体执行引擎的实现。Apache Beam希望基于Beam开发的数据处理程序可以执行在任意的分布式计算引擎上。

Apache Beam主要由Beam SDK和Beam Runner组成,Beam SDK定义了开发分布式数据处理任务业务逻辑的API接口,生成的分布式数据处理任务Pipeline交给具体的Beam Runner执行引擎。Apache Flink目前支持的API是由Java语言实现的,它支持的底层执行引擎包括Apache Flink、Apache Spark和Google Cloud Flatform。

相关推荐:

《大数据分析方法》、《转行大数据分析师后悔了》、《大数据分析师工作内容》、《学大数据分析培训多少钱》、《大数据分析培训课程大纲》、《大数据分析培训课程内容有哪些》、《大数据分析方法》、《大数据分析十八般工具》

数据培训课程

343 评论(14)

道生一,三代二

简单来讲是学习Java、数据结构、关系型数据库、linux系统操作、hadoop离线分析、Storm实时计算、spark内存计算以及实操课程。复杂的话,就是每个大的知识点里都包含着很多小的知识点,这可以参考(青牛的课程)。

292 评论(12)

是薇一的我

培训课程如下:一、大数据前沿知识及hadoop入门零基础入门,了解大数据的历史背景及发展方向,掌握hadoop的两种安装配置二、Hadoop部署进阶熟练掌握hadoop集群搭建;对Hadoop架构的分布式文件系统HDFS进行深入分析三、Java基础了解java程序设计的基本思想,熟练利用eclipse进行简单的java程序设计,熟练使用jar文件,了解mysql等数据库管理系统的原理,了解基于web的程序开发流程四、MapReduce理论及实战熟悉MapReduce的工作原理及应用,熟悉基本的MapReduce程序设计,掌握根据大数据分析的目标设计和编写基于mapreduce的项目五、hadoop+Mahout大数据分析掌握基于hadoop+mahout的大数据分析方法的使用场景,熟练运用mahout的成熟算法进行特定场景的大数据分析六、Hbase理论及实战掌握hbase的数据存储及项目实战、掌握Spark、Hive的安装、配置及使用场景七、Spark大数据分析Spark、Hive的安装、配置及使用场景,熟练运用Spark的成熟算法进行特定场景的大数据分析八、大数据学习综合知识储备统计学:多元统计分析、应用回归计算机:R、python、SQL、数据分析、机器学习matlab和mathematica两个软件也是需要掌握的,前者在实际的工程应用和模拟分析上有很大优势,后者则在计算功能和数学模型分析上十分优秀,相互补助可以取长补短。

129 评论(13)

夜未央周

非常感谢您的提问。数据分析是一个非常热门的领域,因此有很多相关的培训课程。以下是一些常见的数据分析培训课程:1. 数据分析入门课程:这些课程通常涵盖基础的数据分析技能,如数据清洗、数据可视化和基本统计学知识等。2. 数据科学课程:这些课程通常更加深入,涵盖更高级的数据分析技能,如机器学习、深度学习和等。3. 数据库管理课程:这些课程涵盖数据库设计、管理和维护等方面的知识,这对于数据分析师来说非常重要。4. 商业分析课程:这些课程涵盖商业分析的基础知识,如市场调研、竞争分析和战略规划等。5. 数据可视化课程:这些课程涵盖如何使用各种工具和技术创建高质量的数据可视化,以便更好地传达数据分析结果。总之,数据分析是一个非常广泛的领域,有很多不同的培训课程可供选择。选择适合自己的课程,可以帮助您更好地掌握数据分析技能,提高自己的职业竞争力。

145 评论(13)

Shenyangman。

CPDA 数据分析师课程如下:1.数据分析概述(第一天)2.战略管理(第一天)(企业战略管理的模型与方法)3.数据产生(第一天)4.数据导入与预处理(第二天)包括:大数据导入;传统数据导入;数据清洗;数据加工5.数据分析(第二天)数据分析方法描述型数据分析6.数据挖掘(第二天)挖掘概述,Kmeans,购物篮,决策树,朴素贝叶斯7.数据展示(第二天)8.营销决策(第三天)9.市场分析与预测(第三天)10. 市场细分与客户数据分析(第四天)11.营销组合数据分析(第五天)12. 生产采购决策与库存优化(第六天)13. 投资决策概述(第七天)14.项目投资经济收益分析(第七天)15.投资风险分析(第七天)16.投资选择与评估(第七天)17.数据分析项目流程及工作方法(第八天)项目建议书撰写--项目投资计划书更多CPDA数据分析师课程,您可以去CPDA 数据分析师网 看看(如能帮到您,望您采纳!!谢谢~~)

286 评论(11)

嗨吃嗨胀

1、数据仓库原理及联机分析技术介绍数据仓库结构体系,数据仓库数据模型数据抽取、转换和装载,元数据管理OLAP概念及其数据模型多维数据的显示2、数据仓库设计与开发数据仓库分析与设计数据仓库开发过程数据仓库技术与开发的困难OLAP的多维数据分析3、基于数据仓库的决策支持系统基于数据仓库的查询与报表多维分析与原因分析实时决策与预测未来自动决策及其应用介绍4、数据仓库案例剖析统计业数据仓库系统沃尔玛数据仓库系统5、数据挖掘与知识发现数据挖掘的任务与对象数据挖掘方法数据挖掘相关技术6、关联分析算法及其案例关联规则的分类Aprior算法详解从频繁项集产生关联规则基于Climentine的购物篮实例分析7、聚类分析算法及其案例,聚类分析的概念主要的聚类方法K-means算法详解基于Climentine的用户数据聚类实例8、其它数据挖掘算法介绍决策树算法、神经网络算法。

314 评论(9)

新艺能门窗公司

数据分析在当今社会中越来越受到重视,许多机构和学校都推出了数据分析相关的培训课程。这些课程内容包括统计学、机器学习、数据库管理、数据可视化等方面的知识。有些课程还提供编程语言的学习,如R语言和Python等。常见的数据分析培训课程包括大数据/数据分析师认证课程、数据分析师入门课程、高级数据分析课程等。这些课程的授课形式和时间长度各不相同,考生可根据自己的需求选择适合自己的课程。

221 评论(11)

相关问答