香了哩个辣
插值法又称"内插法",是利用函数f (x)在某区间中插入若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。举个例子:年金的现值计算公式为 P=A*(P/A,i,n) 此公式中P,i,n已知两个便可以求出第三个(这里的i便是您问题中的r)所以,当已知P和n时,求i便需要使用插值法计算。 您提出问题的截图是一般算法,解出以上方程太过复杂,所以需要插值法简化计算。例: P/A=2.6087=(P/A,i,3)查年金现值系数表可知r P/A8% 2.5771所求r 2.60877% 2.6243插值法计算: (8%-7%)/(8%-r)=(2.5771-2.6243)/(2.5771-2.6087)求得 r=7.33%以上为插值法全部内容举例说明,除此之外复利的终值与现值、年金的终值都可以使用插值法求的利率或报酬率。插入法的拉丁文原意是“内部插入”,即在已知的函数表中,插入一些表中没有列出的、所需要的中间值。若函数f(x)在自变数x一些离散值所对应的函数值为已知,则可以作一个适当的特定函数p(x),使得p(x)在这些离散值所取的函数值,就是f(x)的已知值。从而可以用p(x)来估计f(x)在这些离散值之间的自变数所对应的函数值,这种方法称为插值法。如果只需要求出某一个x所对应的函数值,可以用“图解内插”。它利用实验数据提供要画的简单曲线的形状,然后调整它,使得尽量靠近这些点。如果还要求出因变数p(x)的表达式,这就要用“表格内插”。通常把近似函数p(x)取为多项式(p(x)称为插值多项式),最简单的是取p(x)为一次式,即线性插值法。在表格内插时,使用差分法或待定系数法(此时可以利用拉格朗日公式)。在数学、天文学中,插值法都有广泛的应用。
默默茶叶
年金的现值计算公式为:P=A*(P/A,i,n),已知A=59000,n=5,(P/A,i,n)为年金现值系数;复利现值计算公式为:P=F*(1+i)^-n,已知F=1250000,n=5,(1+i)^-n为复利现值系数,举个例子,先假设i也就是r为5%,对照那两张系数表代进去看,发现比1000000大了,第二次假设i=15%,算出来比1000000小了,说明在i在5%—15%之间,然后在插个值进去缩小区间,最后的出正确的数10%。
麦兜籹籹
插值法又称“内插法”,是利用函数f (x)在某区间中已知的若干点的函数值,作出适当的特定函数,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。实际利率是指剔除通货膨胀率后储户或投资者得到利息回报的真实利率。而如果是一年多次计息时的名义利率与实际利率,则有着不同的表现:实际利率:1年计息1次时的“年利息/本金”名义利率:1年计息多次的“年利息/本金”财务会计教你如何用插值法计算实际利率举个例子,根据会计准则,在租赁期开始日,承租人应将租赁资产公允价值与最低租赁付款额现在两者中较低者作为租入资产的入账价值,所以是1200 000。租赁款为1500 000,分为五期还,每期还300 000.租赁开始日:借:固定资产 1 200 000未确认融资费用 300 000贷:长期应付款 1500 000
kanyuan820
你说的是财务管理中算内含报酬率的一种方法吗?这个原理是比例法。也就是说先取一个小数,再取一个大一点的数,确定结果在两个试算数字之间,在用比例法计算。具体公司可以看财务管理或者管理会计的书,应当很清楚。
snowwhite白雪
举个例子:年金的现值计算公式为 P=A*(P/A,i,n) 此公式中P,i,n已知两个便可以求出第三个(这里的i便是您问题中的r)所以,当已知P和n时,求i便需要使用插值法计算。 您提出问题的截图是一般算法,解出以上方程太过复杂,所以需要插值法简化计算。例: P/A=2.6087=(P/A,i,3) 查年金现值系数表可知 r P/A 8% 2.5771 所求r 2.6087 7% 2.6243 插值法计算: (8%-7%)/(8%-r)=(2.5771-2.6243)/(2.5771-2.6087) 求得 r=7.33%以上为插值法全部内容举例说明,除此之外复利的终值与现值、年金的终值都可以使用插值法求的利率或报酬率。
优质会计资格证问答知识库