• 回答数

    8

  • 浏览数

    190

阳光通宝
首页 > 会计资格证 > 中级会计解一元三次方程

8个回答 默认排序
  • 默认排序
  • 按时间排序

ALONI爱洛尼家居

已采纳

一元三次方程的公式解法有:1、意大利学者卡尔丹于1545年发表的卡尔丹公式法;2、中国学者范盛金于1989年发表的盛金公式法。两种公式法都可以解标准型的一元三次方程。用卡尔丹公式解题方便,相比之下,盛金公式虽然形式简单,但是整体较为冗长,不方便记忆,但是实际解题更为直观。卡尔丹公式法:特殊型一元三次方程X^3+pX+q=0(p、q∈R)。判别式Δ=(q/2)^2+(p/3)^3。卡尔丹公式X1=(Y1)^(1/3)+(Y2)^(1/3);X2=(Y1)^(1/3)ω+(Y2)^(1/3)ω^2;X3=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω,其中ω=(-1+i3^(1/2))/2;Y(1,2)=-(q/2)±((q/2)^2+(p/3)^3)^(1/2)。标准型一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。令X=Y—b/(3a)代入上式。可化为适合卡尔丹公式直接求解的特殊型一元三次方程Y^3+pY+q=0。卡尔丹判别法:当Δ=(q/2)^2+(p/3)^3>0时,方程有一个实根和一对共轭虚根;当Δ=(q/2)^2+(p/3)^3=0时,方程有三个实根,其中有一个两重根;当Δ=(q/2)^2+(p/3)^3<0时,方程有三个不相等的实根。

中级会计解一元三次方程

162 评论(15)

狂爱KIKI

只含有一个未知数(即“元”),并且未知数的最高次数为3(即“次”)的整式方程叫做一元三次方程(英文名:one variable cubic equation)。一元三次方程的标准形式(即所有一元三次方程经整理都能得到的形式)是ax3+bx2+cx+d=0(a,b,c,d为常数,x为未知数,且a≠0)。一元三次方程的公式解法有卡尔丹公式法与盛金公式法。两种公式法都可以解标准型的一元三次方程。由于用卡尔丹公式解题存在复杂性,相比

333 评论(11)

9月8客馆

最基本的思想就是降次,这也是所有高次方程的基本解题思想。另外,一元三次方程有求根公式,就是用系数来表示根 一元三次方程求根公式的解法 -------摘自高中数学网站 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。

131 评论(10)

美酱老师

x^3+7x^2+16x+12=0x^3+6x^2+9x+x^2+7x+12=0x(x+3)^2+(x+3)(x+4)=0(x+3)(x^2+4x+4)=0(x+3)(x+2)^2=0x=-3或-2

119 评论(12)

Jacksperoll

这个一般都是可以先找出一个方程的根然后再带入求解的

81 评论(12)

lukylukycat

有求根公式。 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。 为了方便看,我上传个pdf,里面用数学公式更好的表示出求根公式。

259 评论(13)

真真麻烦啊

一元三次方程的标准形式为ax^3+bx^2+cx+d=0,将方程两边同时除以最高项系数a,三次方程变为x^3+bx^2/a+cx/a+d/a=0,所以三次方程又可简写为x^3+bx^2+cx+d=0.一元三次方程解法思想是:通过配方和换元,使三次方程降次为二次方程求解.

101 评论(13)

考小拉考小花

因式分解法因式分解法不是对所有的三次方程都适用,只对一些简单的三次方程适用.对于大多数的三次方程,只有先求出它的根,才能作因式分解。当然,对一些简单的三次方程能用因式分解求解的,当然用因式分解法求解很方便,直接把三次方程降次。例如:解方程x^3-x=0对左边作因式分解,得x(x+1)(x-1)=0,得方程的三个根:x1=0;x2=1;x3=-1。一种换元法对于一般形式的三次方程,先将方程化为x^3+px+q=0的特殊型。令x=z-p/3z,代入并化简,得:z^3-p/27z+q=0。再令z=w,代入,得:w^2+p/27w+q=0.这实际上是关于w的二次方程。解出w,再顺次解出z,x。导数求解法利用导数,求的函数的极大极小值,单调递增及递减区间,画出函数图像,有利于方程的大致解答,并且能快速得到方程解的个数,此法十分适用于高中数学题的解答。如f(x)=x^3+x+1,移项得x^3+x=-1,设y1=x^3+x,y2=-1,y1的导数y1'=3x^2+1,得y1'恒大于0,y1在R上单调递增,所以方程仅一个解,且当y1=-1时x在-1与-2之间,可根据f(x1)f(x2)<0的公式,无限逼近,求得较精确的解。盛金公式法三次方程应用广泛。用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式——盛金公式,并建立了新判别法——盛金判别法。

166 评论(14)

相关问答