泷泷大魔王
指数平滑预测法 指以某种指标的本期实际数和本期预测数为基础,引入一个简化的加权因子,即平滑系数,以求得平均数的一种指数平滑预测法。它是加权移动平均预测法的一种变化。平滑系数必须呈大于0、小于1,如0.1、0.4、0.6等。其计算公式为:下期预测数=本期实际数×平滑系数+本期预测数×(1-平滑系数)上列公式是从下列公式演变而成:下期预测数=本期预测数+ 平滑系数(本期实际数- 本期预测数)这个公式的含义是:在本期预测数上加上一部分用平滑系数调整过的本期实际数与本期预测数的差,就可求出下期预测数。一般说来,下期预测数常介乎本期实际数与本期预测数之间。平滑系数的大小,可根据过去的预测数与实际数比较而定。差额大,则平滑系数应取大一些;反之,则取小一些。平滑系数愈大,则近期倾向性变动影响愈大;反之,则近期的倾向性变动影响愈小,愈平滑。这种预测法简便易行,只要具备本期实际数、本期预测数和平滑系数三项资料,就可预测下期数。如某种产品销售量的平滑系数为0.4,1996年实际销售量为31万件,预测销售量为33万件。则1997年的预测销售量为:1997年预测销售量= 31万件×0.4+33万件×(1-0.4)=32.2万件
黄朱朱妈美女
指数平滑法是生产预测中常用的一种方法。所有预测方法中,简单的全期平均法是对时间数列的过去数据一个不漏地全部加以同等利用;移动平均法则不考虑较远期的数据,并在加权移动平均法中给予近期资料更大的权重;而指数平滑法则兼容了全期平均和移动平均所长,不舍弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零的权数。下面将详细介绍指数平滑法这种方法。 指数平滑法的基本公式是: St=ayt+(1-a)St-1 式中,St--时间t的平滑值; yt--时间t的实际值; St-1--时间t-1的实际值; a--平滑常数,其取值范围为[0,1]; 由该公式可知: 1.St是yt和 St-1的加权算数平均数,随着a取值的大小变化,决定yt和 St-1对St的影响程度,当a取1时,St= yt;当a取0时,St= St-1。 2.St具有逐期追溯性质,可探源至St-t+1为止,包括全部数据。其过程中,平滑常数以指数形式递减,故称之为指数平滑法。指数平滑常数取值至关重要。平滑常数决定了平滑水平以及对预测值与实际结果之间差异的响应速度。平滑常数a越接近于1,远期实际值对本期平滑值的下降越迅速;平滑常数a越接近于0,远期实际值对本期平滑值影响程度的下降越缓慢。由此,当时间数列相对平稳时,可取较大的a;当时间数列波动较大时,应取较小的a,以不忽略远期实际值的影响。生产预测中,平滑常数的值取决于产品本身和管理者对良好响应率内涵的理解。 3.尽管St包含有全期数据的影响,但实际计算时,仅需要两个数值,即yt和 St-1,再加上一个常数a,这就使指数滑动平均具逐期递推性质,从而给预测带来了极大的方便。 4.根据公式S1=ay1+(1-a)S0,当欲用指数平滑法时才开始收集数据,则不存在y0。无从产生S0,自然无法据指数平滑公式求出S1,指数平滑法定义S1为初始值。初始值的确定也是指数平滑过程的一个重要条件。 如果能够找到y1以前的历史资料,那么,初始值S1的确定是不成问题的。数据较少时可用全期平均、移动平均法;数据较多时,可用最小二乘法。但不能使用指数平滑法本身确定初始值,因为数据必会枯竭。 如果仅有从y1开始的数据,那么确定初始值的方法有:1)取S1等于y1;2)待积累若干数据后,取S1等于前面若干数据的简单算术平均数,如:S1=(y1+ y2+y3)/3等等。
dapangduola
指数平滑法计算公式:St=aYt-1+(1-a)St-1
指数平滑法实际上是一种特殊的加权移动平均法。
其预测公式为:yt+1'=ayt+(1-a)yt' 式中,yt+1'--t+1期的预测值,即本期(t期)的平滑值St ; yt--t期的实际值; yt'--t期的预测值,即上期的平滑值St-1 。
该公式又可以写作:yt+1'=yt'+a(yt- yt')。可见,下期预测值又是本期预测值与以a为折扣的本期实际值与预测值误差之和。
其特点是:
第一,指数平滑法进一步加强了观察期近期观察值对预测值的作用,对不同时间的观察值所赋予的权数不等,从而加大了近期观察值的权数,使预测值能够迅速反映市场实际的变化。权数之间按等比级数减少,此级数之首项为平滑常数a,公比为(1- a)。
第二,指数平滑法对于观察值所赋予的权数有伸缩性,可以取不同的a 值以改变权数的变化速率。如a取小值,则权数变化较迅速,观察值的新近变化趋势较能迅速反映于指数移动平均值中。
因此,运用指数平滑法,可以选择不同的a 值来调节时间序列观察值的均匀程度(即趋势变化的平稳程度)。
扩展资料:
一段时间内收集到的数据所呈现的上升或下降趋势将导致指数预测滞后于实际需求。通过趋势调整,添加趋势修正值,可以在一定程度上改进指数平滑预测结果。调整后的指数平滑法的公式为:包含趋势预测(YITt)=新预测(Yt)+趋势校正(Tt)。
进行趋势调整的指数平滑预测有三个步骤:
1、 利用前面介绍的方法计算第t期的简单指数平滑预测(Yt);
2、 计算趋势。其公式为: Tt=(1-b)Tt-1+b(Yt-Yt-1)
其中,
Tt=第t期经过平滑的趋势;
Tt-1=第t期上期经过平滑的趋势;
b=选择的趋势平滑系数;
Yt=对第t期简单指数平滑预测;
Yt-1=对第t期上期简单指数平滑预测。
3、计算趋势调整后的指数平滑预测值(YITt).计算公式为:YITt=Yt+Tt。
参考资料:百度百科---指数平滑法
曾在气院呆过
平滑指数是中级财务管理第9章收入与分配管理的内容。
指数平滑法是销售预测定量分析法中的其中一种方法。指数平滑法是一种加权平均法,是以事先确定的平滑指数a及(1-a)作为权数进行加权计算,预测销售量的一种方法。平滑指数的取值通常在0.3~0.7之间,其取值大小决定了前期实际值与预测值对本期预测值的影响。
理论界一般认为有以下方法可供选择:
经验判断法。这种方法主要依赖于时间序列的发展趋势和预测者的经验做出判断。
1、当时间序列呈现较稳定的水平趋势时,应选较小的α值,一般可在0.05~0.20之间取值。
2、当时间序列有波动,但长期趋势变化不大时,可选稍大的α值,常在0.1~0.4之间取值。
3、当时间序列波动很大,长期趋势变化幅度较大,呈现明显且迅速的上升或下降趋势时,宜选择较大的α值,如可在0.6~0.8间选值,以使预测模型灵敏度高些,能迅速跟上数据的变化。
4、当时间序列数据是上升(或下降)的发展趋势类型,α应取较大的值,在0.6~1之间。
试算法。根据具体时间序列情况,参照经验判断法,来大致确定额定的取值范围,然后取几个α值进行试算,比较不同α值下的预测标准误差,选取预测标准误差最小的α。
优质会计资格证问答知识库