戴小卓269500767
插值法是用来算债券的实际利率/市场利率的。插入法的拉丁文原意是“内部插入”,是在已知的函数表中,插入一些表中没有列出的、所需要的中间值的方法。插值法又称“内插法”,是利用函数f(x)在某区间中已知的若干点的函数值,作出适当的特定函数,在区间的其他点上用这特定函数的值作为函数f(x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
沸腾的苦丁茶
此题目,在中级会计实务与注册会计会计书上都多次提到过!现行会计法规下,多用到了"现金流量现值"概念,前四期的现金流量入为每期59,最后一期连本一起为(1000+59) 这是一个求未来现金流量现值的问题 59(1+r)^-1 +59(1+r)^-2 +59(1+r)^-3 +59(1+r)^-4 +(59+1250)(1+r)^-5 = 1000 59*(P/A,I,5)+1250*(P/F,I,5)=1000 第一个(P/A,I,5)是年金现值系数 第二个(P/F,I,5)是复利现值系数 一般是通过插值测出来 比如:设I=9%会得一个答案A,大于1000;设I=11%会得另一个答案B,小于1000 则会有 (1000-A)/(B-A)=(X-9%)/(11%-9%) 解方程可得X,即为所求的10% 至于P/A和P/F,这个是普通年金现值系数与复利现值系数,在财务管理书后面查表可得. 普通年金现值:是指为在每期期末取得相等金额的款项,现在需要投入的金额。计算公式为:P=A×[1-(1+i)^-n]/i,公式中的[1-(1+i)^-n]/i称为年金现值系数,可以用(P/A,i,n)表示也就是P=A×(P/A,i,n) 复利的现值(P)=F×(1+i)^-n,也可以写为(P/F,i,n)请参看我的原回复:
风子武nandy
插值法又称"内插法",是利用函数f (x)在某区间中插入若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
举个例子:年金的现值计算公式为 P=A*(P/A,i,n) 此公式中P,i,n已知两个便可以求出第三个(这里的i便是您问题中的r)所以,当已知P和n时,求i便需要使用插值法计算。 您提出问题的截图是一般算法,解出以上方程太过复杂,所以需要插值法简化计算。例: P/A=2.6087=(P/A,i,3)查年金现值系数表可知r P/A8% 2.5771所求r 2.60877% 2.6243插值法计算: (8%-7%)/(8%-r)=(2.5771-2.6243)/(2.5771-2.6087)求得 r=7.33%以上为插值法全部内容举例说明,除此之外复利的终值与现值、年金的终值都可以使用插值法求的利率或报酬率。
插入法的拉丁文原意是“内部插入”,即在已知的函数表中,插入一些表中没有列出的、所需要的中间值。
若函数f(x)在自变数x一些离散值所对应的函数值为已知,则可以作一个适当的特定函数p(x),使得p(x)在这些离散值所取的函数值,就是f(x)的已知值。从而可以用p(x)来估计f(x)在这些离散值之间的自变数所对应的函数值,这种方法称为插值法。
如果只需要求出某一个x所对应的函数值,可以用“图解内插”。它利用实验数据提供要画的简单曲线的形状,然后调整它,使得尽量靠近这些点。
如果还要求出因变数p(x)的表达式,这就要用“表格内插”。通常把近似函数p(x)取为多项式(p(x)称为插值多项式),最简单的是取p(x)为一次式,即线性插值法。在表格内插时,使用差分法或待定系数法(此时可以利用拉格朗日公式)。在数学、天文学中,插值法都有广泛的应用。
优质会计资格证问答知识库