酒窝喵喵兔
1、数据采集技术
数据采集主要通过Web、应用、传感器等方式获得各种类型的结构化、半结构化及非结构化数据,难点在于采集量大且数据类型繁多。采集网络数据可以通过网络爬虫或API的方式来获取。对于系统管理员来说,系统日志对于管理有重要的意义,很多互联网企业都有自己的海量数据收集工具,用于系统日志的收集,能满足每秒数百MB的日志数据采集和传输需求,如Hadoop的Chukwa、Flume,Facebook的Scribe等。
2、数据预处理技术
大数据的预处理包括对数据的抽取和清洗等方面,数据抽取过程可以将数据转化为单一的或者便于处理的数据结构(常用的数据抽取工具infa)。数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,可以将数据集中的残缺数据、错误数据和重复数据筛选出来并丢弃。
3、大数据存储和管理技术
实现对结构化、半结构化、非结构化海量数据的存储与管理,可以综合利用分布式文件系统、数据仓库、关系型数据库、非关系型数据库等技术。
4、大数据计算引擎批处理模式
一堆数据一起做批量处理,不能满足实时性要求,如MapReduce,Spark。流计算:针对流数据(日志流、用户点击流)的实时计算,需要实时处理。只能用流计算框架做,流计算代表产品:S4+Storm+Flume。图计算:MapReduce也能处理,但效率不高。代表软件:Google Pregel。查询分析计算:交互式查询,要求实时性高。代表产品:Google Dremel、Hive、Cassandra、Impala。
关于初学者如何高效学习大数据技术,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
粉恋桃心
1:大数据工程师看的是个人能力有多强,跟公司的需求是否相匹配。学历并不是很重要的,能有大规模处理
2:大数据工程师需要有着很强的逻辑分析能力。一个公司里边大数据会有很多,方方面面的数据都可能被拿到手。而大数据工程师就需要很强的逻辑数据的经验并且有喜欢在数据海洋中寻宝的好奇心会更适合这个工作。分析能力,从中找出那些是对公司发展最为重要的,那些是不重要的。
3:大数据工程师要有着很强的沟通能力。大数据工程师的工作不管是跟技术部门还是非技术部门都是需要加强联系的,需要跟同事或者领导来不断沟通,才能达到工作效率最大化。
4:大数据工程师需要很强的学习能力。人只要具备很强的学习能力,才能在很短的时间内来适应自己的角色,也可以胜任很多个职位。这样来说的大数据工程师无疑才是最为成功的。
5:大数据工程师要具有很强的计算机编码能力。作为大数据工程师的一些必备因素就是实际开发能力和大规模的数据处理能力。现在社交网络上的无意义信息太多,这就需要我们大数据工程师来亲自挖掘,找出里边最有用的东西。当然有些公司的大数据工程师是以商业分析为主的,但是计算机处理大数据的方式也是必备的技能。
a2581810110
一、计算机编码能力
实际开发能力和大规模的数据处理能力是作为大数据工程师的一些必备要素。举例来说,现在人们在社交网络上所产生的许多记录都是非结构化的数据,如何从这些毫无头绪的文字、语音、图像甚至视频中拾取有意义的信息就需要大数据工程师亲自挖掘。
二、数学及统计学相关的背景
国内BAT为代表的大公司,对于大数据工程师的要求都是希望是统计学和数学背景的硕士或博士学历。缺乏理论背景的数据工作者,按照不同的数据模型和算法总能捯饬出一些结果来,但如果你不知道那代表什么,就并不是真正有意义的结果,并且那样的结果还容易误导你。只有具备一定的理论知识,才能理解模型、复用模型甚至创新模型,来解决实际问题。
三、特定应用领域或行业的知识
大数据工程师这个角色很重要的一点是,不能脱离市场,因为大数据只有和特定领域的应用结合起来才能产生价值。所以,在某个或多个垂直行业的经历能为应聘者积累对行业的认知,对于之后成为大数据工程师有很大帮助。
优质工程师考试问答知识库