小兔子好好
大数据培训,目前主要有两种:1、大数据开发数据工程师建设和优化系统。学习hadoop、spark、storm、超大集群调优、机器学习、Docker容器引擎、ElasticSearch、并发编程等;2、数据分析与挖掘一般工作包括数据清洗,执行分析和数据可视化。学习Python、数据库、网络爬虫、数据分析与处理等。大数据培训一般是指大数据开发培训。大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。
菲歐娜小盆友
想了解数据分析师的职业规划或学习计划,由此来提升自己的技能和专业知识,我觉得最准确最有针对性一个方法就是查阅招聘岗位的工作要求,这样我们就可以有的放矢地好好专研自己的学习。我们看一下以下这条招聘要求:1.负责大数据平台的规划、分析、设计工作,把握整体架构,进行相关技术方案文档的撰写;2.负责大数据平台的部署、开发、维护工作;3.与BI分析人员协作,完成面向业务目标的数据分析模型定义和算法实施工作;4.承担相关技术领域的探索与储备。任职要求:1.大学本科以上学历,熟练掌握C/C++或者JAVA;2.熟悉各种常用数据结构及算法,对linux下的网络数据库开发有足够经验;3.有2年以上C++实战经验者优先;4.有大数据挖据方面经验和技能者优先;如hadoop、hbase、hive等;5.善于与其他部门的成员沟通、协作。还有一个招聘要求是:岗位职责:1、理解并挖掘用户需求,进行数据建模;2、利用专业统计、分析工具从海量数据中总结规律、挖掘潜在价值,提供决策依据。任职要求:1、数学类、统计类、计算机类、人工智能类相关专业本科及以上学历,2年左右专职数据分析、挖掘经验,优秀的应届硕士也可;2、良好的数据敏感性,善于从海量数据中提取有效信息进行分析挖掘和建模;3、熟练掌握任一种分析工具,例SPSS、SAS、R语言、MatLab;4、熟悉数据库技术,如oracle、SQL、MongoDB;5、对于数学建模、数据挖掘、Hadoop大数据有经验者优先。我想,你看到这,应该是对数据分析工程师有了非常明晰的看法,好好加油ba !
燕园小西
1 大学数学牛的人适合2 不排斥敲代码的工作的人适合我是刚出来的,学了很多,但是工作得敲代码,个人有点烦,所以不做了,不过我有上课时的录播,可***(光环大数据的课程,线下学了半年,学费花了19800)
枫叶e宝宝
大数据培训需要5个月左右,如需大数据培训推荐选择【达内教育】,该机构提供完全真实的互联网大数据开发部署环境,帮助学员拥有更完善的实战经验。大数据概念应用到IT操作工具产生的数据中,大数据可以使IT管理软件供应商解决大广泛的业务决策。IT系统、应用和技术基础设施每天每秒都在产生数据。大数据非结构化或者结构数据都代表了用户的行为、服务级别、安全、风险、欺诈行为等更多操作的记录。在【java课程】的基础上加上了部分初级大数据的技术知识,在精通java之余,还能掌握一些大数据的技术知识。感兴趣的话点击此处,免费学习一下想了解更多有关大数据的相关信息,推荐咨询【达内教育】。秉承“名师出高徒、高徒拿高薪”的教学理念,是达内公司确保教学质量的重要环节。作为美国上市职业教育公司,诚信经营,拒绝虚假宣传是该机构集团的经营理念。该机构在学员报名之前完全公开所有授课讲师的授课安排及背景资料,并与学员签订《指定授课讲师承诺书》,确保学员利益。达内IT培训机构,试听名额限时抢购。
en20120705
统计学专业、心理学专业、社会学专业、人口学专业、营销学专业、财务管理专业 这几个专业的比较适合做数据分析。当然也要看你对未来的规划和掌握的知识。数据分析师是一个高薪有前景的职业,未来的发展也是很好的。想入行的话参加培训是一个非常不错的选择。找工作的如果你有cpda证,是一个加分项。证书可以多少代表你的能力。
钟玉婷是好孩纸
首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapReduce程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapReduce、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapReduce处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
优质工程师考试问答知识库