花蜜honey
大数据工程师培训课程有哪些?目前大数据基础课程需要学习Web标准化网页制作,必备的HTML标记和属性、HTML表格、表单的设计与制作、学习CSS、丰富HTML网页的样式、通过CSS布局和定位的学习、让HTML页面布局更加美观、 ... 大数据工程师培训课程有哪些?目前大数据基础课程需要学习Web标准化网页制作,必备的HTML标记和属性、HTML表格、表单的设计与制作、学习CSS、丰富HTML网页的样式、通过CSS布局和定位的学习、让HTML页面布局更加美观、复习所有知识、完成项目布置等。 除此之外大数据工程师培训课程有哪些? 大数据工程师培训课程第一部分:大数据基础——java语言基础方面 1、Java语言基础 Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类 2、 HTML、CSS与Java PC端网站布局、HTML5+CSS3基础、WebApp页面布局、原生Java交互功能开发、Ajax异步交互、jQuery应用 3、JavaWeb和数据库 数据库、JavaWeb开发核心、JavaWeb开发内幕 大数据工程师培训课程第二部分: Linux&Hadoop生态体系 Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架 大数据工程师培训课程第三部分:分布式计算框架和Spark&Strom生态体系 1、分布式计算框架 Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX 图计算、实战一:基于Spark的推荐系统(某一线公司真实项目)、实战二:新浪网() 2、storm技术架构体系 Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、实战一:日志告警系统项目、实战二:猜你喜欢推荐系统实战 大数据工程师培训课程第四部分:大数据项目实战(一线公司真实项目) 数据获取、数据处理、数据分析、数据展现、数据应用 大数据工程师培训课程第五部分:大数据分析 —AI(人工智能) Data Analyze工作环境准备&数据分析基础、数据可视化、Python机器学习 1、Python机器学习2、图像识别&神经网络、自然语言处理&社交网络处理、实战项目:户外设备识别分析

小墩子921
hadoop等学费不到两万吧,不推荐培训,大数据前景可能还好点,但是java不一样,培训很水,对于java而言竞争越来越激烈,不管科班应届生还是转行培训的,没两三年经验包装都不好入职了现在,学历也是一关,也比较水,技术不强的也很多,培训机构意味着时间和金钱的大量成本,斟酌下吧
水之云端
参加大数据培训都学习些什么,随着互联网在近几年的飞速发展,大数据页被越来越多的人所熟知,不管是行内的人还是行外的人都纷纷加入这个行业!于是许多的培训机构也纷纷崛起,开设相关的培训课程!作为一个未来的十分有前景的行业。成为大数据工程师无疑是迎接一个很有前景的职业生涯,那么大数据工程师,要学习什么内容呢。大数据培训的内容:不同的培训机构来说,根据注重的点不同大数据课程内容也有所差异,培训周期也都不大相同。课程内容除开第一阶段学习Java语言基础之外,还要学习HTML、CSS、Java、JavaWeb和数据库、Linux基础、Hadoop生态体系、Spark生态体系等课程内容。二、基础内容学习对于初学大数据的同学来说尤其是零基础的,感觉大数据比较复杂比较难,很难记住。但是对于大数据学习者而言,对于学员的逻辑思维能力要求较高。三、项目实战训练参加大数据培训学习还有一项内容是必须要注意的,那就是课程内容安排上必须要有大数据开发相关的项目,项目练习是学习的核心,在这个过程中可以让我们更加了解项目制作流程,积累一定的经验,在后边的工作面授中也能应答自如。
Nichkhunnie
如果是科班出身(数学/统计学/计算机/金融),最好是先系统培训,打一个基础,有一个知识框架后再通过实践进行学习。 培训的话找口碑好,大校区,实实在在的,都没什么问题的。现在市面上现在学开发的机构太多。鱼龙混杂。可以实地考察一下,在多重选择,多看一下大品牌,口碑好的。在学习的时候选择班型上,看你的学历和基础,如果你学历很低没有计算机基础,不要指望4个月的班型能让你脱胎换骨。
肥猫啃鱼头
参加大数据开发培训需要掌握以下几个方向的内容。
阶段一:JavaSE基础核心
1、深入理解Java面向对象思想
2、掌握开发中常用基础API
3、熟练使用集合框架、IO流、异常
4、能够基于JDK8开发
阶段二:Hadoop生态体系架构
1、Linux系统的安装和操作
2、熟练掌握Shell脚本语法
3、Idea、Maven等开发工具的使用
4、Hadoop组成、安装、架构和源码深度解析,以及API的熟练使用
5、Hive的安装部署、内部架构、熟练使用其开发需求以及企业级调优
6、Zookeeper的内部原理、选举机制以及大数据生态体系下的应
阶段三:Spark生态体系架构
1、Spark的入门安装部署、Spark Core部分的基本API使用熟练、RDD编程进阶、累加器和广播变量的使用和原理掌握、Spark SQL的编程掌握和如何自定义函数、Spark的内核源码详解(包括部署、启动、任务划分调度、内存管理等)、Spark的企业级调优策略
2、DophineScheduler的安装部署,熟练使用进行工作流的调度执行
3、了解数据仓库建模理论,充分熟悉电商行业数据分析指标体系,快速掌握多种大数据技术框架,了解认识多种数据仓库技术模块
4、HBase和Phoenix的部署使用、原理架构讲解与企业级优化
5、开发工具Git&Git Hub的熟练使用
6、Redis的入门、基本配置讲解、jedis的熟练掌握
7、ElasticSearch的入门安装部署及调优
8、充分理解用户画像管理平台的搭建及使用、用户画像系统的设计思路,以及标签的设计流程及应用,初步了解机器学习算法
9、独立构建功能完全的企业级离线数据仓库项目,提升实战开发能力,加强对离线数据仓库各功能模块的理解认知,实现多种企业实战需求,累积项目性能调优经验
阶段四:Flink生态体系架构
1、熟练掌握Flink的基本架构以及流式数据处理思想,熟练使用Flink多种Soure、Sink处理数据,熟练使用基本API、Window API 、状态函数、Flink SQL、Flink CEP复杂事件处理等
2、使用Flink搭建实时数仓项目,熟练使用Flink框架分析计算各种指标
3、ClickHouse安装、使用及调优
4、项目实战。贴近大数据的实际处理场景,多维度设计实战项目,能够更广泛的掌握大数据需求解决方案,全流程参与项目打造,短时间提高学生的实战水平,对各个常用框架加强认知,迅速累积实战经验
5、可选掌握推荐和机器学习项目,熟悉并使用系统过滤算法以及基于内容的推荐算法等
6、采用阿里云平台全套大数据产品重构电商项目,熟悉离线数仓、实时指标的阿里云解决方案
阶段五:就业指导
1、从技术和项目两个角度按照企业面试、
2、熟悉CDH在生产环境中的使用
3、简历指导
以上为大数据培训所要掌握的内容,当然也可以尝试自学的。
优质工程师考试问答知识库