阿圆凸凸凸
这是一篇关于如何成为一名 AI 算法工程师的长文~经常有朋友私信问,如何学 python 呀,如何敲代码呀,如何进入 AI 行业呀?这里总结了成为AI算法工程师所需要掌握的一些要点,看看你距离成为一名 AI 工程师还有多远吧~一、程序编写如同大部分应用软件程序流程的开发设计一样,开发者也在应用多语种来撰写人工智能技术新项目,可是如今都还没一切一种极致的计算机语言是能够 彻底大圣配人工智能技术新项目的。计算机语言的挑选通常在于对人工智能技术程序流程的期待作用。因为其英语的语法,简易性和多功能化,Python变成开发者最爱的人工智能技术开发设计计算机语言。Python最触动内心的地区之一就是说便携式,它能够 在Linux、Windows、MacOS和UNIX等服务平台上应用。容许客户建立互动式的、表述的、模块化设计的、动态性的、可移植的和高级的编码。此外,Python是一种多现代性计算机语言,适用面向对象编程,全过程式和作用式程序编写设计风格。因为其简易的函数库和理想化的构造,Python适用神经元网络和NLP解决方法的开发设计。变成一个达标的AI数据工程师必须灵活运用python基本英语的语法、python句子和表述句、python中的涵数与控制模块、python面向对象编程及其python文字实际操作。把握面向对象编程数据信息编程技术,都是为中后期的AI学习培训奠定扎扎实实的程序编写工作能力。二、数学课要学习培训人工智能技术,最基础的高数、线代、摡率论务必把握,最少也得会高斯函数、矩阵求导,搞清楚梯度下降是什么原因,不然针对实体模型的基本概念彻底不可以了解,实体模型调参加训炼也就无从说起了。高数高数必须把握的有关内容包含涵数、数列、极限、最后、极值与最值、威廉姆斯指数值和系数。线性代数线性代数的内容包含行列式、引流矩阵、最小二乘法、矢量的线性相关性、引流矩阵的初等变换和秩、线性方程组的解和矩阵特征值概率统计概率统计里的恶性事件、几率、贝叶斯定理、概率分布、期待与方差与参数估计了解数学思维训练管理体系在深度神经网络中的运用,能够 了解深度神经网络中常见的数学函数公式,可以用python程序编写保持常见的数学课优化算法。三、深度神经网络深度神经网络一部分包含MLP实体模型、CNN卷积神经网络、RNN循环系统神经元网络、GAN生成式抵抗神经元网络等。MLP实体模型必须具有了解双层感知机的运作全过程和基本原理,并可以构建双层感知机实体模型。CNN卷积神经网络把握怎么使用CNN互联网解决室内空间难题,如照片、视频等数据信息。了解卷积、池化,及其反卷积、反池化的全过程和基本原理。而且可以构建有关的卷积互联网实体模型。RNN循环系统神经元网络把握怎么使用RNN解决时间序列难题,如智能化回复、智能翻译等。了解循环系统神经元网络RNN和LSTM、GRU的运作全过程和基本原理。可以构建有关的循环系统神经网络模型训炼与提升。GAN生成式抵抗神经元网络让神经元网络具有造就工作能力,了解生成式抵抗神经元网络和其变异互联网的基本原理,并可以构建变分自编号的互联网实体模型训炼和提升,可保持图象转化成、视频语音转化成等。四、新项目实战演练开展一些新项目实战演练针对你的工作经验累积是十分有利的。人工智能技术图象/视觉行业数据工程师应当具有的新项目实践经验:YOLOV3多物块跟踪/CenterLoss图像识别技术/Mask-RCNN图像分割。可以解决多总体目标跟踪,图像识别技术、图象隔开、图象核对等应用领域新项目。而且根据新项目能学得许多 工程项目方法,具体新项目中训炼实体模型的方式 和调参的工作经验。掌握了这些,你的AI算法工程师之路就能更近一步啦~
凯利的心窝
算法工程师需要掌握的技能:算法能力、编程能力(Python、C++、Java等编程语言,Sql、数据库)、调包能力、Pipeline构建能力、数据分析能力、辅助技术能力等。
Lucy…黄小猪
算法工程师目前是一个高端也是相对紧缺的职位;近两年的就业前景是非常好的,薪资也比较高。但是算法工程师同时也需要不断学习。那么成为一名合格的算法工程师需要掌握哪些岗位技能呢,我们接着往下看。业务学习能力算法工程师是不可能脱离业务背景的,人工智能算法工程师、交通算法工程师、图像处理算法工程师等等。针对一个业务场景设计一个合理的算法,业务知识是非常重要的,需要结合业务的实际情况、限定条件、各种专业词汇和知识都要有一定的了解,如果脱离场景而一味地琢磨算法,效果不会太好。比如,做交通算法,需要对交通组织、交通管理、通行损失、周期延误等有所认知。比如,做图像处理,需要对各种图像去噪、图像增广、图像分割、物理成像有所了解,知道像素底层是怎么回事。持续学习能力算法工程师的主要工作就是拿着现有成熟的算法,结合面临业务场景去做一个合理的方案,如果我们知识面太窄,那显然当用到的时候会有点拮据,眼界也被限制住,不知道还有没有更好效果的算法、目前算法有哪些不足之处、在这个业务中能不能发挥作用。只有持续学习,了解足够多的知识,当我们面临问题的时候能够快速对比、选择,找出最合适的一种算法。灵活的思维当我们选择一种算法去解决一个问题时,效果肯定无法达到我们预期的那样。比如我们拿mask rcnn做医学图像语义分割,我们看着它在自然图像方面表现效果很好,就拿来用于医学图像。但是医学图像有它的难点和特殊性,当跑出效果时会发现结果不如人意,这时候就需要灵活的思维去发现问题,去调优、改进,或者从数据入手,或者从网络模型入手,或者从超参数入手。编程能力不同公司对于算法工程师的定位有所差别,比如有些朋友在某公司做算法工程师只负责方案的设计,开发由专门的开发人员实施。有的公司算法工程师要完成算法设计到开发全部工作。无论是哪一种形式,编程能力都是必要的,就算是前者这样的形式,有专门的开发人员,那在算法的设计过程中需要验证、对比,对每一个小模块算法进行指标评价,你不可能事事都找别人来帮你做,这样效率低,而且开展工作困难。综上所述,就是小编今天整理的关于算法工程师的相关内容,希望可以帮助到大家。
墨剂先生
转帖:工作内容:设计和优化应用算法,并协助完成应用软件方案设计及算法设计; 独立完成数学建模及算法设计; 编写相关技术文档。教育培训: 应用数学、计算机等相关专业本科以上学历。 工作经验: 算法开发人员重在很强的逻辑思维能力。并且需要熟练掌握数学建模、应用算法的设计和优化理论;精通C/C++ 或其他一种编程语言;熟悉数据库的接口技术。职业发展路径:国内算法应用开发工程师人才缺乏,需求相对较大。此职位专业技术性很强,对数学、算法及编程能力有很高的要求。经过一段时间的工作经验的积累后,可发展成为高级软件工程师、需求工程师,但需要具有丰富的软件开发经验和相关工作的技术背景。如果想成为技术经理、项目经理,则还需要具有较强的管理和组织等方面的能力。
wisteria1221
BAT企业的算法工程师是这样工作的:问题抽象、数据采集和处理、特征工程、建模训练调优、模型评估、上线部署。(具体操作可以看阿里算法专家chris老师的算法工作流视频算法工作流是怎样的?)而一个算法工程师真正值钱的地方在于问题抽象和上线部署这两个。
以上是一个算法工程师的工作流,所以你要做以上内容的话,需要的技能和知识有以下这些:
①机器学习的基础是数学,入门AI必须掌握一些必要的数学基础,但是并不是全部的数学知识都要学,只学工作上实际有用到的,比如是微积分、概率论、线性代数、凸优化等这些。
②数据分析里需要应用到的内容也需要掌握,但不是网上所说的从0开始帮你做数据分析的那种,而是数据挖掘或者说是数据科学领域相关的东西,比如要知道计算机里面怎么挖掘数据、相关的数据挖掘工具等等
补足了以上数学和数据挖掘基本知识,才可以正式进行机器学习算法原理的学习。
③算法方面需要掌握一些基本的框架:python、spark、mllib、scikit-learning、pytorch、TensorFlow,数据方面需要懂得HQL、numpy、pandas,如果你本身是后台开发、app开发、数据分析、项目管理,则是一个学习算法的一个加分项。
④最后需要对人工智能有全局的认知,所以菜鸟窝的机器学习vip大课会讲授到算法理论,包括机器学习、深度学习两大模块,相关的算法原理、推导和应用的掌握,以及最重要算法思想。
优质工程师考试问答知识库