Krystaldxe
这个要看你在哪个城市了,每个城市所存在的机构都不一样。最好选择覆盖地区广的,比较权威的培训机构。大数据的专业要求很高。目前敢培训大数据的学校都是具备一定专业性的,主要看看是否能提供真实的案例来供学生们分析来进行专业性的判断。多看看网络上的口碑。找到真正适合自己的培训机构。需要掌握的专业技术:坚实的Java技术作为基础支持,之后学习:Hadoop,大数据存储,大数据架构设计,大数据实时计算,大数据数据采集,大数据商业实战等。技术人员就业方向:大数据系统研发人才,大数据应用开发人才和大数据分析人才。
啾啾大神
全国培训机构千千万,别的不说,给几点建议还是可以的:1.看师资,这个是必要的,毕竟好的老师,教学水平会直接影响在学学员的学习质量,那么我们该如何分辨?直接有效的方式就是实地的试听,试听老师的课程,去感受上课的氛围,学生的一个学习状态,大概你就清楚老师的教学水平了。2.看教学方式,授课模式,对于想通过培训转行IT,建议教学模式选择面授,教学方式选择理论+实践+项目实训的学习模式,因为技术行业,实践为主,面授的话,老师可以手把手的带,手把手的教,有什么问题可以随时的问,随时解决,提升自己的学习效率。3.看后期学员的就业情况,看口碑,市场的口碑,是否总体口碑情况较好,了解往届毕业学员的就业情况,平均薪资,这个你可以看他们的就业数据,有条件的可以跟以往学生联系下,了解具体的一个情况,心里就有底了。道听途说不足为信,要实地考察。个人建议,以上三个方面为重点考察要点,至于课程体系,学费,都是可以直观看到的,可以通过朋友,自己的对比来进行考量,就不一一的阐述了。对了还有最后一点,要明白,后期就业好不好,跟自己的技术能力有关,在培训期间好好的学习技术是关键,后期也需要自己不断的学习,那么就业自然是不用担心的。希望想入行IT的小伙伴,都能找到自己满意的培训机构。
piaopiao1234
大数据近两年在深圳还是受it行业的追捧的,有的大学已经开了大数据的课程。大数据技术类岗位:比如像初级数据开发Hadoop、Spark开发师,大数据构架师等数据运维类岗位:大数据采集工程师,门户网站管理员,应用系统运行维护工程师等大数据分析类岗位:大数据分析专员,大数据分析师,数据挖掘分析师等如果你想培训大数据,多找几家对比下,不要盲目的选择,在之前先了解行业发展,以便做出更好的选择。
疯*草莓
任何行业都有大数据,譬如电信行业,互联网行业,电力,交通,教育,医疗等等。 随着业务的增长和新业务的更新,并且数据的来源越来越多,数据量的增加和数据管理的需求,都促使各个行业有大数据分析的需要。
张祝君1
大数据工程师培训课程有哪些?目前大数据基础课程需要学习Web标准化网页制作,必备的HTML标记和属性、HTML表格、表单的设计与制作、学习CSS、丰富HTML网页的样式、通过CSS布局和定位的学习、让HTML页面布局更加美观、 ... 大数据工程师培训课程有哪些?目前大数据基础课程需要学习Web标准化网页制作,必备的HTML标记和属性、HTML表格、表单的设计与制作、学习CSS、丰富HTML网页的样式、通过CSS布局和定位的学习、让HTML页面布局更加美观、复习所有知识、完成项目布置等。 除此之外大数据工程师培训课程有哪些? 大数据工程师培训课程第一部分:大数据基础——java语言基础方面 1、Java语言基础 Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类 2、 HTML、CSS与Java PC端网站布局、HTML5+CSS3基础、WebApp页面布局、原生Java交互功能开发、Ajax异步交互、jQuery应用 3、JavaWeb和数据库 数据库、JavaWeb开发核心、JavaWeb开发内幕 大数据工程师培训课程第二部分: Linux&Hadoop生态体系 Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架 大数据工程师培训课程第三部分:分布式计算框架和Spark&Strom生态体系 1、分布式计算框架 Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX 图计算、实战一:基于Spark的推荐系统(某一线公司真实项目)、实战二:新浪网() 2、storm技术架构体系 Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、实战一:日志告警系统项目、实战二:猜你喜欢推荐系统实战 大数据工程师培训课程第四部分:大数据项目实战(一线公司真实项目) 数据获取、数据处理、数据分析、数据展现、数据应用 大数据工程师培训课程第五部分:大数据分析 —AI(人工智能) Data Analyze工作环境准备&数据分析基础、数据可视化、Python机器学习 1、Python机器学习2、图像识别&神经网络、自然语言处理&社交网络处理、实战项目:户外设备识别分析
优质工程师考试问答知识库