baby梓瑜
学习大数据可以从事很多工作,比如说:hadoop 研发工程师、大数据研发工程师、大数据分析工程师、数据库工程师、hadoop运维工程师、大数据运维工程师、java大数据工程师、spark工程师等等都是我们可以从事的工作岗位!不同的岗位,所具备的技术知识也是不一样的,需要从各个方向学习,逐个击破!
大数据培训
Hadoop开发工程师
你就需要具备以下技术:
a. 基于hadoop、hive等构建数据分析平台,进行数据平台架构设计、开发分布式计算业务;
b. 应用大数据、数据挖掘、分析建模等技术,对海量数据进行挖掘,发现其潜在的关联规则;
c. 对hadoop、hive、hbase、Map/Reduce相关产品进行预研、开发;
d. **Hadoop相关技术解决海量数据处理问题、大数据量的分析。
e. Hadoop相关业务脚本的性能优化与提升,不断提高系统运行效率;
数据工程师
职责:
a. 分析各类用户不断变化的行为;
b. 预测各类营销对用户的影响,定位精准市场投放;
c. 帮助实现自动化监控平台。
Hadoop运维工程师
你需要具备以下技术知识:
a. 平台大数据环境的部署维护和技术支持;
b. 应用故障的处理跟踪及统计汇总分析;
c. 应用安全,数据的日常备份和应急恢复;
数据挖掘分析师
你需要具备以下技术:
a.对优先考虑的账户进行统计分析,从而更大限度的成功化。
b.与主管或客户端沟通行动计划,并找出需要改进的地方。
c.执行战略数据分析和研究,以支持业务需求。
d.找准机会从而用复杂的统计建模提高生产率。
e.浏览数据来认准机会并提高业务成效。
f.指定业务流程,目标和战略的理解,以提供分析和解释。
g.针对内部讨论的理解,在适当情况下获得业务需求和必要的分析。
小雨叫主子
调查人员在进行文案调查时,应该满足以下几个方面的要求:广泛性、针对性、时效性、连续性。广泛性,文案调查对现有资料的收集必须周详,要通过各种信息渠道,利用各种机会,采取各种方式大量收集各方面有价值的资料。一般说来,既要有宏观资料,又要有微观资料;既要有历史资料,又要有现实资料;既要有综合资料,又要有典型资料。大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中,大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法)大数据的36V特点:Volume(大量)、Velocity(高速)、Variety(多样)、veracity(真实性)。大数据需要特殊的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
密果儿颖颖
本人03年计算机科学与技术毕业,转行到商业数据分析,大学教书7年,从网络到数据库、软件开发;2010年接触数据分析,,一路学习,进入某上市公司做人才测评工作,开始正式入行,从产品竞争情报分析、产品快速测试、用户图谱、数据采集、报表、可视化制作等入手,后来到建模、对比分析、关联分析、聚类等,后来又去阿XXX呆了一年多,然后又和加拿大一帮分析师一起工作,从他们身上学到很多思维方式和分析经验,对如何通过数据去解决企业实践问题的能力提升很多。现在自己和加拿大哥们开公司,专门为中国企业做数据商业咨询服务,业务太多都有点忙不过来了。另外一块业务就是为阿里云提供大数据分析教育内容,比如高校大数据专业的课程体系、实验室产品等,阿里云大数据分析师ACP认证整套体系和认证考试培训研发都是我们公司开发的。还有每年全国各高校大数据专业的师资培训都是我们在做。所以总结我个人的学习路径和方法及认知,给你们提供一条学习路径,希望对你们在大数据商业分析师这条职业道路上有所帮助!以职业能力结构的学习图谱
具体学习路径与方法:第一层通用技能
1、 通用技能是作为数据分析师必须具备的分析工具和大数据相关知识;数据编程:数据编程工具有Python、R、SAS等,目前用的多的是Python,如果有语言基础的小伙伴上手很快,语法、函数、面向对象这些都比较简单,没有基础的小伙伴也可以自学,不是很难,推荐的学习《小象学院》每天学习一节课,听完后可以去阿里云大学官网去做一些Clouder,增加对Python在项目中的使用场景理解,数据清洗、爬虫、数据分析、数据可视化这些是工作中经常用到的。建议书籍:
2、 数据存储:主要是数据库、数据建模,分析师对数据仓库需要了解,这些基础课程完全可以自学,推荐优达学城里面有这些课程,老师讲的HIA不错,也可以去九道门做些实验项目,他们有时候搞活动是免费的;如果你觉得还是难,那就采用最基础的学习路径,直接买MYSQL关系型数据库的书看,随便到网上去找个免费的MYSQL课程听;先解决会的问题。建议书籍:
另外分布式存储HDOOP需要简单了解就可以了,如果能自己搭建3个节点跑通,个人觉得就OK了,3、 云计算:做为分析师对云计算的技术作为了解就可以了,可以不做目前的强化学习内容4、 数据预处理:这个是数据分析师必须时刻记住的事情,从我们这个行业有句行话,叫垃圾进来垃圾出去,如果数据质量控制不好,后面做的再牛逼,也是垃圾;这个课程主要是看大家对数据的理解和质量控制的方法,目前市场上有专门的岗位就叫ETL数据清洗工程师;有专门的数据质量控制或者数据清洗的书。
5、 数据可视化:数据可视化不是很难,如果不要求特别美工的话,大家先理解图表,再研究研究仪表板,阿里云的Quich BI及DataV,百度的echarts都不错,主要是展示的业务结构需要规划。6、 大数据技术:这个相对来说有些难度,如果是学数学统计类专业小伙伴就非常有优势了,其他专业的小伙伴也不用担心,毕竟工作后还可以继续学习,在工作中用的比较多的是聚类、关联、决策树、线性回归等,如果你不去做模型和算法工程师那么只需要会用就可以了,实在不行有专业的工具让我们用,比如第四范式的产品和阿里云的机器学习PAN都是可以直接出结果的工具;推荐书籍:
7、 分析&AI:这部分先了解数据分析的基本流程和分析手法;上面的如果都学了,可以到阿里云大学上面去做几个数据分析方面的案例,增加对数据分析的流程理解和相关技术应用,但是要注意的是阿里案例都是用阿里的工具来实现的,比较简单,建议大家自己编程实现,也可以到天池大赛上去看一些案例,自己做做训练。
以上的工具学习如果自学的小伙伴觉得很难坚持,那就只能去报培训班了,需要提醒大家的是目前培训机构愚弄混杂,在工具教学上有些机构还算马马虎虎,大部分培训机构的老师根本没做过商业分析项目,很多思维方式可能会误导你。至于那个培训机构好,我也不是很清楚,个人觉得自己坚持以上东西是可以自学的,做好规划一步步往前,时间可能长点,需要恒心。第二层商业分析学完通用技能后你是否能真正入门,到企业能干活就看这一层了,在写这篇学习路径的时候我帮大家简单做了中国培训机构的调查分析,北风网、传智播客、达内、千峰、兄弟连、容大、华信智原等稍微好点的能做第一层,第二层都做不了,主要原因分析真正做大数据商业咨询人才都在名企,专业做数据咨询的公司员工一是没时间,二是价格高,培训机构请不起。
我帮大家总结了,目前中国市场大部分企业招聘大数据分析师主要为四个层面服务;一为产品经理服务,国内产品经理不懂数据分析,而新产品的竞争情报分析、产品敏捷测试等都需要数据分析师帮助完成,后期产品迭代优化还是需要数据分析师采集用户行为、习惯、评价等数据来完成。二是为运营服务,产品运营中的用户流量、促销、顾客关系管理等需要数据分析师帮助完成;三是公司数据制定和标准建设、各部门数据打通,数据化管理等工作需要数据分析师完成,四是数据情报和数据预测为高层服务。从以上四个方面我们再去看第二层的商业分析能力和业务知识能力就显得尤为重要,这个时候是考验分析师的业务理解能力及通过数据为企业解决实际问题的能力了。比如分析师的分析流程、分析思维、分析技能、展示说服能力。小伙伴们要想快速进入第二层只有三种方式,一是锁定一个行业,刚开始别嫌工资低,入行1年左右,拼的就是悟性和钻劲,也能进入,如果运气好找个专业做数据咨询的公司那就很快,一个项目下来套路就明白了;二是能遇到一个比较牛的师傅,人家愿意教你,这个也很快,我就是遇到师傅的人,半年时间就完成第二层,不过本人原来做过教师,口才、文案这些软性技能比较强;呵呵。第三种方法推荐去阿里合作伙伴决明科技,这家公司是专门做数据咨询服务的,这家公司有一块业务是做教育的,比如企业培训(阿里的合作企业大数据商业培训都是这家公司在交付),师资培训(这家公司每年做二期高校大数据应用师资培训),去年和前年做了二期大数据商业分析实训,有的被他们公司留下了,其他学员被阿里系的企业一抢而空,听说企业招聘一个人还给这个公司钱;不过他们招人实训要求比较高,首先要本科及以上学历,要会分析工具和数据库相关知识;具体情况小伙伴可以去百度一下九道门就知道了。另外听说很多培训机构租他们的大数据实验平台.第三层:上面我说在入行的时候建议大家选择一个行业,不要轻易换行业,大数据商业分析师对行业的要求很高,本身如果你是行业专家有加上懂数据分析,那就是行业大数据商业分析大牛了,这个需要时间和项目沉淀,现在这种行业大牛在国内很少,因为数据分析行业中国才刚刚发展,企业才刚刚接受这个岗位!这个行业是非常不错的,有潜力,偏商科,技术辅助;真正的大牛不是特别看重数据分析技术,而是分析思维,能用数据帮助企业在产品、价格、促销、顾客、流量、财务、广告、流程、工艺等方面进行价值提升。主要是三个方面的分析,一是现状分析、二是原因分析、三是预测分析。洋洋洒洒写了这么多,希望对您有一些启发和帮助!也希望我们以后在大数据商业分析的江湖上进行切磋相遇!祝您学业有成,尽快入行,加油!
优质工程师考试问答知识库