• 回答数

    5

  • 浏览数

    358

霍爾因斯基
首页 > 工程师考试 > 数据建模工程师

5个回答 默认排序
  • 默认排序
  • 按时间排序

米诺很努力

已采纳

1.大数据架构的工具与组件数据工程师更关注分析基础架构,因此所需的大部分技能都是以架构为中心的。2.深入了解SQL和其它数据库解决方案数据工程师需要对数据库管理系统有比较熟悉的了解,而且深入了解SQL非常重要。同样其它数据库解决方案,例如Cassandra或BigTable也须熟悉,因为不是每个数据库都是由可识别的标准来构建。3.数据仓库和ETL工具数据仓库和ETL经验对于数据工程师至关重要。像Redshift或Panoply这样的数据仓库解决方案,以及ETL工具,比如StitchData或Segment都非常有用。另外,数据存储和数据检索经验同样重要,因为处理的数据量是个天文数字。4.基于Hadoop的分析(HBase,Hive,MapReduce等)对基于Apache Hadoop的分析有深刻理解是这个领域的一个非常必要的需求,一般情况下HBase,Hive和MapReduce的知识存储是必需的。5.编码说到解决方案,编码与开发能力是一个重要的优点(这也是许多职位的要求),你要熟悉Python,C/C++,Java,Perl,Golang或其它语言,这会非常有价值。6.机器学习虽然数据工程师主要关注的是数据科学,但对数据处理技术的理解会加分,比如一些统计分析知识和基础数据建模

数据建模工程师

171 评论(8)

优异空间

1.大数据架构的工具与组件

数据工程师更关注分析基础架构,因此所需的大部分技能都是以架构为中心的。

2.深入了解SQL和其它数据库解决方案

数据工程师需要对数据库管理系统有比较熟悉的了解,而且深入了解SQL非常重要。同样其它数据库解决方案,例如Cassandra或BigTable也须熟悉,因为不是每个数据库都是由可识别的标准来构建。

3.数据仓库和ETL工具

数据仓库和ETL经验对于数据工程师至关重要。像Redshift或Panoply这样的数据仓库解决方案,以及ETL工具,比如StitchData或Segment都非常有用。另外,数据存储和数据检索经验同样重要,因为处理的数据量是个天文数字。

4.基于Hadoop的分析(HBase,Hive,MapReduce等)

对基于Apache Hadoop的分析有深刻理解是这个领域的一个非常必要的需求,一般情况下HBase,Hive和MapReduce的知识存储是必需的。

5.编码

说到解决方案,编码与开发能力是一个重要的优点(这也是许多职位的要求),你要熟悉Python,C/C++,Java,Perl,Golang或其它语言,这会非常有价值。

6.机器学习

虽然数据工程师主要关注的是数据科学,但对数据处理技术的理解会加分,比如一些统计分析知识和基础数据建模。

358 评论(14)

蝶澈kaixin

一般像绿狐的都有课程总监、脚本设计、故事策划等等。

110 评论(8)

冬日红葉

数据工程师负责大数据架构的开发、构建、维护和测试,数据库和大数据处理系统。负责创建用于建模,挖掘,获取和验证数据集合等流程。【数据工程师的工作内容】有:学习并适应产品设计开发体系和公司产品开发程序,按产品开发规范进行新产品设计,产品设计验证;完成产品技术积累,形成技术规范,理解公司程序及用户的特定文件编制要求,确保全新产品设计成功引入公司;完成产品设计资料并发布,确保设计资料对制造过程工艺路线和方法具有指导作用,与用户交流并确保图纸状态持续的满足用户技术状态要求;完成项目的设计验证计划并实施,进行技术积累,形成规范的设计模板,实现技术进步,持续改进,并推行持续性改进作为更改的手段;与制造工程师紧密合作,降低产品设计成本,达到适合公司具体情况的产品设计,确保现有条件某具体项目制造过程的最合理性。想了解更多有关数据工程师的详情,推荐选择【达内教育】。【达内教育】引领行业的职业教育公司,致力于IT互联网行业,培养软件开发工程师、系统管理员、UI设计师、网络营销工程师、会计等职场人才,拥有强大的师资力量,实战讲师对实战经验倾囊相授,部分讲师曾就职于IBM、微软、Oracle-Sun、华为等企业,其教研团队更是有独家26大课程体系,助力学生系统化学习。→感兴趣的话点击此处,免费学习一下

307 评论(10)

可爱滴娃

数据工程师都做什么?数据工程师负责创建和维护分析基础架构,该基础架构几乎可以支持数据世界中的所有其他功能。他们负责大数据架构的开发、构建、维护和测试,例如数据库和大数据处理系统。大数据工程师还负责创建用于建模,挖掘,获取和验证数据集合等流程。数据工程师的关键技能下面介绍数据工程师所需的几项关键技能。1.大数据架构的工具与组件数据工程师更关注分析基础架构,因此所需的大部分技能都是以架构为中心的。2.深入了解SQL和其它数据库解决方案数据工程师需要熟悉数据库管理系统,深入了解SQL至关重要。同样其它数据库解决方案,例如Cassandra或BigTable也须熟悉,因为不是每个数据库都是由可识别的标准来构建。3.数据仓库和ETL工具数据仓库和ETL经验对于数据工程师至关重要。像Redshift或Panoply这样的数据仓库解决方案,以及ETL工具,比如StitchData或Segment都非常有用。此外,数据存储和数据检索经验同样重要,因为处理的数据量是个天文数字。4.基于Hadoop的分析(HBase,Hive,MapReduce等)对基于Apache Hadoop的分析有深刻理解是这个领域的一个非常必要的需求,一般情况下HBase,Hive和MapReduce的知识存储是必需的。5.编码说到解决方案,编码与开发能力是一个重要的优点(这也是许多职位的要求),你要熟悉Python,C/C++,Java,Perl,Golang或其它语言,这会非常有价值。6.机器学习虽然数据工程师主要关注的是数据科学,但对数据处理技术的理解会加分,比如一些统计分析知识和基础数据建模。机器学习已经成为标准数据科学,该领域的知识可以帮我们构建同类产品的解决方案。这种知识还有一个好处,就是让你在这个领域极具市场价值,因为在这种情况下能够“戴上两顶帽子”会让你成为一个更强大的工具。7.多种操作系统最后,需要我们对Unix,Linux和Solaris系统有深入了解,许多数学工具基于这些操作系统,因为它们有Windows和Mac系统功能没有的访问权限和特殊硬件需求。

168 评论(8)

相关问答