changyin1116
算法工程师是这样工作的:问题抽象、数据采集和处理、特征工程、建模训练调优、模型评估、上线部署。而一个算法工程师真正值钱的地方在于问题抽象和上线部署这两个。那么怎么去做一个算法工程师?算法工程师是一个非常高端的职位;是非常紧缺的专业工程师,兼具前途和钱途!1.专业要求:计算机、电子、通信、数学等相关专业;2.学历要求:本科及其以上的学历,大多数是硕士学历及其以上;3.语言要求:英语要求是熟练,基本上能阅读国外专业书刊;必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。机器学习是一门多领域交叉学科,涉及概率论、统计学、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要是归纳、综合,而不是演绎。关于算法工程师的相关学习,推荐CDA数据师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。
11月de蔷薇
大数据分析工作主要是2大方向,大数据技术和大数据分析,CDA课程设计比较合理,网上有很多试听视频。第一部分 大数据平台:大数据平台包含了采集层、存储层、计算层和应用层,是一个复杂的IT系统,需要学会Hadoop等分布式系统的开发技能。采集层:Sqoop可用来采集导入传统关系型数据库的数据、Flume对于日志型数据采集,另外使用Python一类的语言开发网络爬虫获取网络数据;储存层:分布式文件系统HDFS最为常用;计算层:有不同的计算框架可以选择,常见的如MapReduce、Spark等,一般来讲,如果能使用计算框架的“原生语言”,运算效率会最高(MapReduce的原生支持Java,而Spark原生支持Scala);应用层:包括结果数据的可视化、交互界面开发以及应用管理工具的开发等,更多的用到Java、Python等通用IT开发前端、后端的能力;第二部分 大数据分析:大数据挖掘指的是利用算法和模型提高数据处理效率、挖掘数据价值、实现从数据到知识的转换数据分析方法论:统计基础 微积分(求导)代数(矩阵运算)等统计模型:方差分析、线性回归、逻辑回归、列联分析、聚类分析、面板模型等数据挖掘模型:决策树 关联分析、SVM、神经网络 贝叶斯网络等
优质工程师考试问答知识库