家装e站重庆站
上采样upsampling的主要目的是放大图像,几乎都是采用内插值法,即在原有图像像素的基础上,在像素点值之间采用合适的插值算法插入新的元素。 线性插值法是指使用连接两个已知量的直线来确定在这个两个已知量之间的一个未知量的值的方法。 假设已知两个坐标(x0,y0)和(x1,y1),要得到[x0,x1]区间内某一位置x在直线上的值。 该直线的方程可表示为: 这样 双线性插值是插值算法中的一种,是线性插值的扩展。利用原图像中目标点四周的四个真实存在的像素值来共同决定目标图中的一个像素值,其核心思想是在两个方向分别进行一次线性插值。 已知的红色数据点和待插值的绿色数据点 假如我们想得到未知函数f在点P= (x,y) 的值,假设我们已知函数f在 四个点的值。 在x与y方向上,z值成单调性特性的应用中,此种方法可以做外插运算,即可以求解Q11~Q22所构成的正方形以外的点的值。 总结:线性插值法利用原图像中两个点计算像素值进行插值,双线性插值法利用原图像中四个点计算目标像素值进行插值。 这是最简单的一种插值方法,不需要计算,在待求象素的四邻象素中,将距离待求象素最近的邻象素灰度赋给待求象素。设i+u, j+v(i, j为正整数, u, v为大于零小于1的小数,下同)为待求象素坐标,则待求象素灰度的值 f(i+u, j+v)如下图所示: 如果(i+u, j+v)落在A区,即u<, v<,则将左上角象素的灰度值赋给待求象素,同理,落在B区则赋予右上角的象素灰度值,落在C区则赋予左下角象素的灰度值,落在D区则赋予右下角象素的灰度值。 最邻近元法计算量较小,但可能会造成插值生成的图像灰度上的不连续,在灰度变化的地方可能出现明显的锯齿状。 双线性内插法是利用待求象素四个邻象素的灰度在两个方向上作线性内插。 如下图所示: 对于 (i, j+v),f(i, j) 到 f(i, j+1) 的灰度变化为线性关系,则有: f(i, j+v) = [f(i, j+1) - f(i, j)] * v + f(i, j) 同理对于 (i+1, j+v) 则有: f(i+1, j+v) = [f(i+1, j+1) - f(i+1, j)] * v + f(i+1, j) 从f(i, j+v) 到 f(i+1, j+v) 的灰度变化也为线性关系,由此可推导出待求象素灰度的计算式如下: f(i+u, j+v) = (1-u) * (1-v) * f(i, j) + (1-u) * v * f(i, j+1) + u * (1-v) * f(i+1, j) + u * v * f(i+1, j+1) 双线性内插法的计算比最邻近点法复杂,计算量较大,但没有灰度不连续的缺点,结果基本令人满意。它具有低通滤波性质,使高频分量受损,图像轮廓可能会有一点模糊。 该方法利用三次多项式S(x)求逼近理论上最佳插值函数sin(x)/x, 其数学表达式为: 待求像素(x, y)的灰度值由其周围16个灰度值加权内插得到,如下图: 待求像素的灰度计算式如下: f(x, y) = f(i+u, j+v) = ABC 其中: 三次曲线插值方法计算量较大,但插值后的图像效果最好。
奔跑吧笑笑
你好,领学网为你解答:计算机视觉部分:1、考察特征点匹配算法,输入两幅图像中的特征点对,输出匹配的特征点对,(128维描述子)距离计算函数已给出无需考虑复杂度。编写伪代码,分析算法复杂度;2、考察图像旋转。左边图像时旋转一定角度后的图像(有黑边),右边为正常图像。已知两幅图像都为WxH,以及左图像与四边的切点A1A2A3A4,设计旋转算法使左图像变换矫正成右图像,编写伪代码,分析算法复杂度及优缺点;3、主要考察双目视觉中的标定知识。给出了双目视觉的成像原理图及相关定理和表达。第一小题,需要证明x'Fx=0 x'x为左右图像中的匹配点对,并要求给出F矩阵的秩;第二小题要求推导出最少可由多少对左右图像中匹配点可以推导出F矩阵;4、要求写出图像处理和计算机视觉在无人飞行器中的3个重要应用。给出理由和解决方案并分析。图像处理部分:1、主要考察一维中值滤波,退化为区间滤波 编写伪代码,分析算法复杂度;2、主要考察二维中值滤波,编写伪代码,分析算法复杂度;3、如何去除脉冲噪声,图像中有大量随机产生的255和0噪声;4、考察加权中值滤波公式推导以及一维加权中值滤波控制部分:对象举例均为四旋翼无人飞行器,各题目要求设计控制器,给出控制率,还有观测方案设计等等;有一题比较简单就是说明PID的各部分含义以及如何调节。希望帮到你!
优质工程师考试问答知识库