• 回答数

    6

  • 浏览数

    341

机器猫TJ
首页 > 工程师考试 > 大数据工程师培训日志

6个回答 默认排序
  • 默认排序
  • 按时间排序

80年代之后

已采纳

一、基础部分:JAVA语言 和 LINUX系统

二、数据开发:

1、数据分析与挖掘

一般工作包括数据清洗,执行分析和数据可视化。学习Python、数据库、网络爬虫、数据分析与处理等。

大数据培训一般是指大数据开发培训。

大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。

2、大数据开发

数据工du程师建设和优化系统。学习hadoop、spark、storm、超zhi大集群调优、机器学习、Docker容器引擎、ElasticSearch、并发编程等;

课程学习一共分为六个阶段:

大数据工程师培训日志

106 评论(10)

西风华诞

参加大数据开发培训需要掌握以下几个方向的内容。

阶段一:JavaSE基础核心

1、深入理解Java面向对象思想

2、掌握开发中常用基础API

3、熟练使用集合框架、IO流、异常

4、能够基于JDK8开发

阶段二:Hadoop生态体系架构

1、Linux系统的安装和操作

2、熟练掌握Shell脚本语法

3、Idea、Maven等开发工具的使用

4、Hadoop组成、安装、架构和源码深度解析,以及API的熟练使用

5、Hive的安装部署、内部架构、熟练使用其开发需求以及企业级调优

6、Zookeeper的内部原理、选举机制以及大数据生态体系下的应

阶段三:Spark生态体系架构

1、Spark的入门安装部署、Spark Core部分的基本API使用熟练、RDD编程进阶、累加器和广播变量的使用和原理掌握、Spark SQL的编程掌握和如何自定义函数、Spark的内核源码详解(包括部署、启动、任务划分调度、内存管理等)、Spark的企业级调优策略

2、DophineScheduler的安装部署,熟练使用进行工作流的调度执行

3、了解数据仓库建模理论,充分熟悉电商行业数据分析指标体系,快速掌握多种大数据技术框架,了解认识多种数据仓库技术模块

4、HBase和Phoenix的部署使用、原理架构讲解与企业级优化

5、开发工具Git&Git Hub的熟练使用

6、Redis的入门、基本配置讲解、jedis的熟练掌握

7、ElasticSearch的入门安装部署及调优

8、充分理解用户画像管理平台的搭建及使用、用户画像系统的设计思路,以及标签的设计流程及应用,初步了解机器学习算法

9、独立构建功能完全的企业级离线数据仓库项目,提升实战开发能力,加强对离线数据仓库各功能模块的理解认知,实现多种企业实战需求,累积项目性能调优经验

阶段四:Flink生态体系架构

1、熟练掌握Flink的基本架构以及流式数据处理思想,熟练使用Flink多种Soure、Sink处理数据,熟练使用基本API、Window API 、状态函数、Flink SQL、Flink CEP复杂事件处理等

2、使用Flink搭建实时数仓项目,熟练使用Flink框架分析计算各种指标

3、ClickHouse安装、使用及调优

4、项目实战。贴近大数据的实际处理场景,多维度设计实战项目,能够更广泛的掌握大数据需求解决方案,全流程参与项目打造,短时间提高学生的实战水平,对各个常用框架加强认知,迅速累积实战经验

5、可选掌握推荐和机器学习项目,熟悉并使用系统过滤算法以及基于内容的推荐算法等

6、采用阿里云平台全套大数据产品重构电商项目,熟悉离线数仓、实时指标的阿里云解决方案

阶段五:就业指导

1、从技术和项目两个角度按照企业面试、

2、熟悉CDH在生产环境中的使用

3、简历指导

以上为大数据培训所要掌握的内容,当然也可以尝试自学的。

249 评论(9)

哈西哈西哈西

大数据培训课程一般会涉及数据统计、数据仓库与商务智能技术、机器学习与模式识别、HADOOP技术等。培训方式大体分为视频学习、线上直播学习、线下面授学习、双元学习模式几种方式。如需大数据培训推荐选择【达内教育】。【达内教育】web阶段项目贯穿整个JavaWeb学习阶段。利用项目需求引申出知识点进行授课。需求引领思路,应用驱动学习。可以整体提升学员的编程思想、编码能力、实现对【Java】后台知识的熟练掌握,并为后续课程学习做铺垫。项目涉及HTTP协议、Tomcat服务器、静态Web资源开发技术、Java后台开发技术、数据库技术、手写基础框架、编程思想实践、在线支付、权限控制等重点功能点。感兴趣的话点击此处,免费学习一下想了解更多有关大数据的相关信息,推荐咨询【达内教育】。达内与阿里、Adobe、红帽、ORACLE、微软、美国计算机行业协会(CompTIA)、百度等国际知名厂商建立了项目合作关系。共同制定行业培训标准,为达内学员提供高端技术、所学课程受国际厂商认可,让达内学员更具国际化就业竞争力。达内IT培训机构,试听名额限时抢购。

142 评论(9)

钱小小小疯纸

参加大数据培训都学习些什么,随着互联网在近几年的飞速发展,大数据页被越来越多的人所熟知,不管是行内的人还是行外的人都纷纷加入这个行业!于是许多的培训机构也纷纷崛起,开设相关的培训课程!作为一个未来的十分有前景的行业。成为大数据工程师无疑是迎接一个很有前景的职业生涯,那么大数据工程师,要学习什么内容呢。大数据培训的内容:不同的培训机构来说,根据注重的点不同大数据课程内容也有所差异,培训周期也都不大相同。课程内容除开第一阶段学习Java语言基础之外,还要学习HTML、CSS、Java、JavaWeb和数据库、Linux基础、Hadoop生态体系、Spark生态体系等课程内容。二、基础内容学习对于初学大数据的同学来说尤其是零基础的,感觉大数据比较复杂比较难,很难记住。但是对于大数据学习者而言,对于学员的逻辑思维能力要求较高。三、项目实战训练参加大数据培训学习还有一项内容是必须要注意的,那就是课程内容安排上必须要有大数据开发相关的项目,项目练习是学习的核心,在这个过程中可以让我们更加了解项目制作流程,积累一定的经验,在后边的工作面授中也能应答自如。

247 评论(10)

老实就奇

第一阶段Java语言基础01Java开发介绍02熟悉Eclipse开发工具03Java语言基础04Java流程控制05Java字符串06Java数组与类和对象07数字处理类与核心技术08I/O与反射、多线程09Swing程序与集合类第二阶段HTML、CSS与JavaScript01PC端网站布局02HTML5+CSS3基础03WebApp页面布局04原生JavaScript交互功能开发05Ajax异步交互06JQuery应用第三阶段JavaWeb和数据库01数据库02JavaWeb开发核心03JavaWeb开发内幕第四阶段Linux基础01Linux安装与配置02系统管理与目录管理03用户与用户组管理04Shell编程05服务器配置06Vi编辑器与Emacs编辑器第五阶段Hadoop生态体系01Hadoop起源与安装02MapReduce快速入门03Hadoop分布式文件系统04Hadoop文件I/O详解05MapReduce工作原理06MapReduce编程开发07Hive数据仓库工具08开源数据库HBase09Sqoop与Oozie第六阶段Spark生态体系01Spark简介02Spark部署和运行03Spark程序开发04Spark编程模型05作业执行解析06Spark SQL与DataFrame07深入Spark Streaming08Spark MLlib与机器学习09GraphX与SparkR10spark项目实战11scala编程12Python编程第七阶段Storm实时开发01storm简介与基本知识02拓扑详解与组件详解03Hadoop分布式系统04spout详解与bolt详解05zookeeper详解06storm安装与集群搭建07storm-starter详解08开源数据库HBase09trident详解第八阶段项目案例01模拟双11购物平台02前端工程化与模块化应用主要都讲这些内容!

132 评论(13)

快乐的精灵王

大数据开发工程师课程体系——Java部分。第一阶段:静态网页基础1、学习Web标准化网页制作,必备的HTML标记和属性2、学习HTML表格、表单的设计与制作3、学习CSS、丰富HTML网页的样式4、通过CSS布局和定位的学习、让HTML页面布局更加美观5、复习所有知识、完成项目布置第二阶段:JavaSE+JavaWeb1、掌握JAVASE基础语法2、掌握JAVASE面向对象使用3、掌握JAVASEAPI常见操作类使用并灵活应用4、熟练掌握MYSQL数据库的基本操作,SQL语句5、熟练使用JDBC完成数据库的数据操作6、掌握线程,网络编程,反射基本原理以及使用7、项目实战 + 扩充知识:人事管理系统第三阶段:前端UI框架1、JAVASCRIPT2、掌握Jquery基本操作和使用3、掌握注解基本概念和使用4、掌握版本控制工具使用5、掌握easyui基本使用6、项目实战+扩充知识:项目案例实战POI基本使用和通过注解封装Excel、druid连接池数据库监听,日志Log4j/Slf4j第四阶段:企业级开发框架1、熟练掌握spring、spring mvc、mybatis/2、熟悉struts23、熟悉Shiro、redis等4、项目实战:内容管理系统系统、项目管理平台流程引擎activity,爬虫技术nutch,lucene,webService CXF、Tomcat集群 热备 MySQL读写分离以上Java课程共计384课时,合计48天!大数据开发工程师课程体系——大数据部分第五阶段:大数据前传大数据前篇、大数据课程体系、计划介绍、大数据环境准备&搭建第六阶段:CentOS课程体系CentOS介绍与安装部署、CentOS常用管理命令解析、CentOS常用Shell编程命令、CentOS阶段作业与实战训练第七阶段:Maven课程体系Maven初识:安装部署基础概念、Maven精讲:依赖聚合与继承、Maven私服:搭建管理与应用、Maven应用:案列分析、Maven阶段作业与实战训练第八阶段:HDFS课程体系Hdfs入门:为什么要HDFS与概念、Hdfs深入剖析:内部结构与读写原理、Hdfs深入剖析:故障读写容错与备份机制、HdfsHA高可用与Federation联邦、Hdfs访问API接口详解、HDFS实战训练、HDFS阶段作业与实战训练第九阶段:MapReduce课程体系MapReduce深入剖析:执行过程详解、MapReduce深入剖析:MR原理解析、MapReduce深入剖析:分片混洗详解、MapReduce编程基础、MapReduce编程进阶、MapReduc阶段作业与实战训练第十阶段:Yarn课程体系Yarn原理介绍:框架组件流程调度第十一阶段:Hbase课程体系Yarn原理介绍:框架组件流程调度、HBase入门:模型坐标结构访问场景、HBase深入剖析:合并分裂数据定位、Hbase访问Shell接口、Hbase访问API接口、HbaseRowkey设计、Hbase实战训练第十二阶段:MongoDB课程体系MongoDB精讲:原理概念模型场景、MongoDB精讲:安全与用户管理、MongoDB实战训练、MongoDB阶段作业与实战训练第十三阶段:Redis课程体系Redis快速入门、Redis配置解析、Redis持久化RDB与AOF、Redis操作解析、Redis分页与排序、Redis阶段作业与实战训练第十四阶段:Scala课程体系Scala入门:介绍环境搭建第1个Scala程序、Scala流程控制、异常处理、Scala数据类型、运算符、Scala函数基础、Scala常规函数、Scala集合类、Scala类、Scala对象、Scala特征、Scala模式匹配、Scala阶段作业与实战训练第十五阶段:Kafka课程体系Kafka初窥门径:主题分区读写原理分布式、Kafka生产&消费API、Kafka阶段作业与实战训练第十六阶段:Spark课程体系Spark快速入门、Spark编程模型、Spark深入剖析、Spark深入剖析、SparkSQL简介、SparkSQL程序开发光速入门、SparkSQL程序开发数据源、SparkSQL程序开DataFrame、SparkSQL程序开发DataSet、SparkSQL程序开发数据类型、SparkStreaming入门、SparkStreaming程序开发如何开始、SparkStreaming程序开发DStream的输入源、SparkStreaming程序开发Dstream的操作、SparkStreaming程序开发程序开发--性能优化、SparkStreaming程序开发容错容灾、SparkMllib 解析与实战、SparkGraphX 解析与实战第十七阶段:Hive课程提体系体系结构机制场景、HiveDDL操作、HiveDML操作、HiveDQL操作、Hive阶段作业与实战训练第十八阶段:企业级项目实战1、基于美团网的大型离线电商数据分析平台2、移动基站信号监测大数据3、大规模设备运维大数据分析挖掘平台4、基 于互联网海量数据的舆情大数据平台项目以上大数据部分共计学习656课时,合计82天!0基础大数据培训课程共计学习130天。以上是大数据开发培训内容,加米谷是线下面授小班教学!

203 评论(15)

相关问答