道生一,三代二
贪吃的懒妞
用户行为数据分析的三个层次是对用户在产品上的产生的行为及行为背后的数据进行分析,通过构建用户行为模型和用户画像,来改变产品决策,实现精细化运营,指导业务增长。在产品运营过程中,DM hub对用户行为的数据进行收集、存储、跟踪、分析与应用等,可以找到实现用户自增长的病毒因素、群体特征与目标用户,从而深度还原用户使用场景、操作规律、访问路径及行为特点等。
燕若雪0211
用户行为分析,是指在获得网站访问量基本数据的情况下,对有关数据进行统计、分析,从中发现用户访问网站的规律,并将这些规律与网络营销策略等相结合,从而发现目前网络营销活动中可能存在的问题,并为进一步修正或重新制定网络营销策略提供依据。
奇文文1314
用户行为分析是对用户在产品上的产生的行为及行为背后的数据进行分析,通过构建用户行为模型和用户画像,来改变产品决策,实现精细化运营,指导业务增长。在产品运营过程中,DM hub对用户行为的数据进行收集、存储、跟踪、分析与应用等,可以找到实现用户自增长的病毒因素、群体特征与目标用户,从而深度还原用户使用场景、操作规律、访问路径及行为特点等。
ybxiong168
第一个问题,什么是用户行为分析:过去的用户行为分析普遍的问题是:分析不聚焦、采集不全面、开发周期长、完全依靠人工埋点、事后分析、维度单一、指标传统。所以当下可以把用户行为分析定义为:基于用户生命周期管理模型、全面采集所有数据、事中分析、提前预测、实时多维组合、科学维度划分、自定义指标的分析。第二个问题:怎么做用户行为分析你提出这个问题,证明你可能暂时没有数据分析团队,或者数据分析团队尚不成熟和完善,所以需要开展数据分析工作的话建议是借助第三方的平台。这一块业务目前国内已经相对成熟,也有很多不错的合作伙伴可以选择了,硅谷的明星公司可以选择Google Analytics或者Mixpanel等,不过我最推荐的还是国内的数极客。具体如何开展,我个人的建议是:选择采用AARRR模型的平台,通过对用户全程行为的跟踪,让我们在经营中运营中,拥有Acquisition(获客)、Activation(激活与活跃)、Retention(留存)、Revenue(收入)、Refer(二次传播) 全程数据分析功能。
lingling8826
问题比较泛,只能粗略回答了 :) 一、精细化运营的目标 比如说你的产品只是个工具,那恐怕谈不上过多的精细化运营,一般做好常规的用户行为分析、再配合用户定性研究,用于指导产品的设计即可;如果是内容型产品,或者功能和内容兼具的产品,那确实需要考虑。 设计统计框架 假设用户在你的app上会频繁进行交互和使用功能,同时还会浏览或者产生内容,那么需要在产品设计的同时,把你的统计框架设计好。 二、简要的操作流程 数据采集首先列出你需要的数据项,接着评估哪部分是需要APP上报的,哪部分是后台可以统计的,然后分别在前后台加上。一般来讲,APP上报采集的数据,在发布前一定要经过谨慎的校验和测试,因为一旦版本发布出去而数据采集出了问题,不仅之前的功夫都白做了,还会带来一大堆脏数据,同时还有可能降低客户端的运行效率,得不偿失。 数据整理数据采集完之后,需要将各种原始数据加工成为产品经理需要的直观的可看数据,这里需要做一些基本的数据逻辑关联和展示,就不赘述了。 数据分析按照一开始设计的统计框架,你可以很清楚的看到自己需要的数据了。 当然以上只是基础得不能再基础的分析,再深入一点的,例如你拿到这些数据,可以分析使用A功能的用户同时还喜欢B功能,二者关联性较强,是否可以在前端设计时更多的考虑整合,或者界面上的调整;比如分析点击流,大部分用户访问或使用APP的路径是怎么样的,是不是把核心功能藏得太深了?再比如可以分析不同用户属性,比如男性用户和女性用户,他们在用户行为上是否有明显差异?等等。 不同产品的数据分析方式和模型差距非常大,没法一下子就说清楚。所以以上更多的是举例。 三、一些需要注意的原则 数据本身是客观的,但被解读出来的数据一定是主观的,同样的数据由不同的人分析很可能得出完全相反的结论,所以一定不能提前带着观点去分析(比如已经有了假设,再用数据去论证); APP采集数据,一定是优先级比较低的事情,不能因为数据的采集而影响产品的性能和用户体验,更不能采集用户的隐私数据(虽然国内很多APP并没有这么做); 数据不是万能的,还是要相信自己的判断。
优质广东专升本问答知识库